找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Periodic Solutions of the N-Body Problem; Kenneth R. Meyer Book 1999 Springer-Verlag Berlin Heidelberg 1999 Celestial Mechanics.Hamiltonia

[復(fù)制鏈接]
查看: 27291|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:03:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Periodic Solutions of the N-Body Problem
編輯Kenneth R. Meyer
視頻videohttp://file.papertrans.cn/745/744072/744072.mp4
概述Includes supplementary material:
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Periodic Solutions of the N-Body Problem;  Kenneth R. Meyer Book 1999 Springer-Verlag Berlin Heidelberg 1999 Celestial Mechanics.Hamiltonia
描述The N-body problem is the classical prototype of a Hamiltonian system with a large symmetry group and many first integrals. These lecture notes are an introduction to the theory of periodic solutions of such Hamiltonian systems. From a generic point of view the N-body problem is highly degenerate. It is invariant under the symmetry group of Euclidean motions and admits linear momentum, angular momentum and energy as integrals. Therefore, the integrals and symmetries must be confronted head on, which leads to the definition of the reduced space where all the known integrals and symmetries have been eliminated. It is on the reduced space that one can hope for a nonsingular Jacobian without imposing extra symmetries. These lecture notes are intended for graduate students and researchers in mathematics or celestial mechanics with some knowledge of the theory of ODE or dynamical system theory. The first six chapters develops the theory of Hamiltonian systems, symplectic transformations and coordinates, periodic solutions and their multipliers, symplectic scaling, the reduced space etc. The remaining six chapters contain theorems which establish the existence of periodic solutions of the
出版日期Book 1999
關(guān)鍵詞Celestial Mechanics; Hamiltonian Systems; N-Body Problem; Symmetries; mechanics
版次1
doihttps://doi.org/10.1007/BFb0094677
isbn_softcover978-3-540-66630-1
isbn_ebook978-3-540-48073-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

書目名稱Periodic Solutions of the N-Body Problem影響因子(影響力)




書目名稱Periodic Solutions of the N-Body Problem影響因子(影響力)學(xué)科排名




書目名稱Periodic Solutions of the N-Body Problem網(wǎng)絡(luò)公開度




書目名稱Periodic Solutions of the N-Body Problem網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Periodic Solutions of the N-Body Problem被引頻次




書目名稱Periodic Solutions of the N-Body Problem被引頻次學(xué)科排名




書目名稱Periodic Solutions of the N-Body Problem年度引用




書目名稱Periodic Solutions of the N-Body Problem年度引用學(xué)科排名




書目名稱Periodic Solutions of the N-Body Problem讀者反饋




書目名稱Periodic Solutions of the N-Body Problem讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:26 | 只看該作者
第144072主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 03:16:34 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 04:38:50 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:12:56 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 16:51:13 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 20:00:55 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:25:16 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:33:33 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 07:56:39 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尚志市| 汉寿县| 通辽市| 神农架林区| 武安市| 通辽市| 鄂托克旗| 鲜城| 徐州市| 四平市| 武平县| 定陶县| 宝山区| 集安市| 云南省| 凤城市| 门源| 行唐县| 连南| 西充县| 石狮市| 邢台市| 东港市| 文登市| 晋州市| 泌阳县| 乌苏市| 信宜市| 通辽市| 方正县| 新蔡县| 安岳县| 尼木县| 保德县| 冷水江市| 丘北县| 尉犁县| 龙岩市| 大悟县| 清丰县| 远安县|