找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Period Mappings with Applications to Symplectic Complex Spaces; Tim Kirschner Book 2015 Springer International Publishing Switzerland 2015

[復(fù)制鏈接]
查看: 12633|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:54:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Period Mappings with Applications to Symplectic Complex Spaces
編輯Tim Kirschner
視頻videohttp://file.papertrans.cn/745/744052/744052.mp4
概述Presents sheaves with a clear connection to the set-theoretic foundations.Strives for a maximum of rigor (concerning proofs, statements, definitions, and notation).Overcomes the “canonical isomorphism
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Period Mappings with Applications to Symplectic Complex Spaces;  Tim Kirschner Book 2015 Springer International Publishing Switzerland 2015
描述.Extending Griffiths’ classical theory of period mappings for compact K?hler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Fr?licher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperk?hler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely..
出版日期Book 2015
關(guān)鍵詞14F05,18F20,32C35,32C20,14D05,14D07,14J32,32Q25,18G40; ; Fr?licher spectral sequence; Gau?-Manin connec
版次1
doihttps://doi.org/10.1007/978-3-319-17521-8
isbn_softcover978-3-319-17520-1
isbn_ebook978-3-319-17521-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Period Mappings with Applications to Symplectic Complex Spaces影響因子(影響力)




書目名稱Period Mappings with Applications to Symplectic Complex Spaces影響因子(影響力)學(xué)科排名




書目名稱Period Mappings with Applications to Symplectic Complex Spaces網(wǎng)絡(luò)公開度




書目名稱Period Mappings with Applications to Symplectic Complex Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Period Mappings with Applications to Symplectic Complex Spaces被引頻次




書目名稱Period Mappings with Applications to Symplectic Complex Spaces被引頻次學(xué)科排名




書目名稱Period Mappings with Applications to Symplectic Complex Spaces年度引用




書目名稱Period Mappings with Applications to Symplectic Complex Spaces年度引用學(xué)科排名




書目名稱Period Mappings with Applications to Symplectic Complex Spaces讀者反饋




書目名稱Period Mappings with Applications to Symplectic Complex Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:33:32 | 只看該作者
第144052主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:32:52 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:13:29 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:49:24 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:03:16 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:59:11 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:20:38 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:01:04 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:09:45 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳池县| 湾仔区| 三江| 克山县| 桑日县| 玉林市| 海晏县| 阳城县| 平和县| 杨浦区| 富蕴县| 阳西县| 新田县| 阜新市| 离岛区| 济南市| 九龙城区| 德保县| 水富县| 涟源市| 行唐县| 永寿县| 武功县| 饶阳县| 兴安县| 江华| 汶上县| 米林县| 高阳县| 泗洪县| 京山县| 潞西市| 哈尔滨市| 郁南县| 玛纳斯县| 蓝田县| 中江县| 平罗县| 克什克腾旗| 丰台区| 文成县|