找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Period Mappings with Applications to Symplectic Complex Spaces; Tim Kirschner Book 2015 Springer International Publishing Switzerland 2015

[復(fù)制鏈接]
查看: 12633|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:54:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Period Mappings with Applications to Symplectic Complex Spaces
編輯Tim Kirschner
視頻videohttp://file.papertrans.cn/745/744052/744052.mp4
概述Presents sheaves with a clear connection to the set-theoretic foundations.Strives for a maximum of rigor (concerning proofs, statements, definitions, and notation).Overcomes the “canonical isomorphism
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Period Mappings with Applications to Symplectic Complex Spaces;  Tim Kirschner Book 2015 Springer International Publishing Switzerland 2015
描述.Extending Griffiths’ classical theory of period mappings for compact K?hler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Fr?licher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperk?hler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely..
出版日期Book 2015
關(guān)鍵詞14F05,18F20,32C35,32C20,14D05,14D07,14J32,32Q25,18G40; ; Fr?licher spectral sequence; Gau?-Manin connec
版次1
doihttps://doi.org/10.1007/978-3-319-17521-8
isbn_softcover978-3-319-17520-1
isbn_ebook978-3-319-17521-8Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

書目名稱Period Mappings with Applications to Symplectic Complex Spaces影響因子(影響力)




書目名稱Period Mappings with Applications to Symplectic Complex Spaces影響因子(影響力)學(xué)科排名




書目名稱Period Mappings with Applications to Symplectic Complex Spaces網(wǎng)絡(luò)公開度




書目名稱Period Mappings with Applications to Symplectic Complex Spaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Period Mappings with Applications to Symplectic Complex Spaces被引頻次




書目名稱Period Mappings with Applications to Symplectic Complex Spaces被引頻次學(xué)科排名




書目名稱Period Mappings with Applications to Symplectic Complex Spaces年度引用




書目名稱Period Mappings with Applications to Symplectic Complex Spaces年度引用學(xué)科排名




書目名稱Period Mappings with Applications to Symplectic Complex Spaces讀者反饋




書目名稱Period Mappings with Applications to Symplectic Complex Spaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:33:32 | 只看該作者
第144052主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:32:52 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:13:29 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 08:49:24 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:03:16 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:59:11 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 22:20:38 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:01:04 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:09:45 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辉县市| 剑阁县| 武冈市| 武冈市| 宾川县| 五大连池市| 资兴市| 平凉市| 凤山市| 新营市| 乐业县| 栾川县| 宜阳县| 巴林右旗| 金山区| 新和县| 区。| 观塘区| 灌阳县| 灌南县| 祁连县| 大洼县| 张家川| 信丰县| 宝兴县| 教育| 九台市| 新安县| 九龙坡区| 保亭| 兴和县| 禹州市| 偃师市| 团风县| 都安| 湟中县| 贵定县| 连山| 敦化市| 寿光市| 东乡县|