找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Path Integral Quantization and Stochastic Quantization; Michio Masujima Book 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Eic

[復(fù)制鏈接]
查看: 44866|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:50:32 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Path Integral Quantization and Stochastic Quantization
編輯Michio Masujima
視頻videohttp://file.papertrans.cn/743/742064/742064.mp4
概述Excellent overview.Important topic in elementary particle physics.Available online in LINK.All figures and references linked.Table of contents, introductions to chapters free for all.http://link.sprin
圖書封面Titlebook: Path Integral Quantization and Stochastic Quantization;  Michio Masujima Book 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Eic
描述In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. Forthe description ofthe classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal- ism. The Hamiltonian formalism is derived from the Lagrangian·formalism. In the standard formalism ofquantum mechanics, we usually make use ofthe Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism ofquantum mechanics is Schrodinger‘s wave mechan- ics. In this approach, we regard the Hamilton-Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Based on the optical analogy, we obtain the Schrodinger equation as a result ofthe inverse of the Eikonal approximation to the Hamilton-Jacobi equation, and thus we arrive at "wave mechanics". The second formalism ofquantum mechanics is Heisenberg‘s "matrix me- chanics". In this approach, we arrive at the Heisenberg equation of motion from consideration of the consistency of the Ritz combination principle, the Bohr quantizatio
出版日期Book 2009Latest edition
關(guān)鍵詞Eichtheorie; Feldtheorie; Pfadintegrale; Stochastische Quantisierung; quantum mechanics
版次2
doihttps://doi.org/10.1007/978-3-540-87851-3
isbn_softcover978-3-540-87850-6
isbn_ebook978-3-540-87851-3
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Path Integral Quantization and Stochastic Quantization影響因子(影響力)




書目名稱Path Integral Quantization and Stochastic Quantization影響因子(影響力)學(xué)科排名




書目名稱Path Integral Quantization and Stochastic Quantization網(wǎng)絡(luò)公開度




書目名稱Path Integral Quantization and Stochastic Quantization網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Path Integral Quantization and Stochastic Quantization被引頻次




書目名稱Path Integral Quantization and Stochastic Quantization被引頻次學(xué)科排名




書目名稱Path Integral Quantization and Stochastic Quantization年度引用




書目名稱Path Integral Quantization and Stochastic Quantization年度引用學(xué)科排名




書目名稱Path Integral Quantization and Stochastic Quantization讀者反饋




書目名稱Path Integral Quantization and Stochastic Quantization讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:09 | 只看該作者
第142064主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 01:35:59 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:06:22 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:39:12 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:10:05 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:04:04 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:24:00 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 02:45:22 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:21:06 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武功县| 莒南县| 勐海县| 阿拉善盟| 南宫市| 子长县| 文昌市| 西昌市| 武鸣县| 长海县| 峨山| 望奎县| 松阳县| 永胜县| 通榆县| 岚皋县| 砀山县| 剑川县| 海门市| 合江县| 绥中县| 壤塘县| 霍邱县| 平阴县| 桑日县| 临安市| 永修县| 巧家县| 台中市| 吉安市| 鱼台县| 喀什市| 博白县| 岢岚县| 岐山县| 五常市| 海安县| 陆良县| 昌乐县| 红桥区| 西丰县|