找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Partial Differential Inequalities with Nonlinear Convolution Terms; Marius Ghergu Book 2022 The Author(s), under exclusive license to Spri

[復(fù)制鏈接]
查看: 43597|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:27:11 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms
編輯Marius Ghergu
視頻videohttp://file.papertrans.cn/742/741535/741535.mp4
概述Focuses on the rapidly expanding topic of PDEs with nonlinear convolution terms.Provides a self-contained approach based on non-variational methods.Presents a specific mathematical direction motivated
叢書名稱SpringerBriefs in Mathematics
圖書封面Titlebook: Partial Differential Inequalities with Nonlinear Convolution Terms;  Marius Ghergu Book 2022 The Author(s), under exclusive license to Spri
描述.This brief research monograph uses modern mathematical methods to investigate partial differential equations with nonlinear convolution terms, enabling readers to understand the concept of a solution and its asymptotic behavior.?.In their full generality, these inequalities display a non-local structure. Classical methods, such as maximum principle or sub- and super-solution methods, do not apply to this context. This work discusses partial differential inequalities (instead of differential equations) for which there is no variational setting..This current work brings forward other methods that prove to be useful in understanding the concept of a solution and its asymptotic behavior related to partial differential inequalities with nonlinear convolution terms. It promotes and illustrates the use of a priori estimates, Harnack inequalities, and integral representation of solutions.. .One of the first monographs on this rapidly expanding field, the presentwork appeals to graduate and postgraduate students as well as to researchers in the field of partial differential equations and nonlinear analysis..
出版日期Book 2022
關(guān)鍵詞quasilinear differential operators; p-Laplace operator; mean curvature operator; polyharmonic operator;
版次1
doihttps://doi.org/10.1007/978-3-031-21856-9
isbn_softcover978-3-031-21855-2
isbn_ebook978-3-031-21856-9Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms影響因子(影響力)




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms影響因子(影響力)學(xué)科排名




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms網(wǎng)絡(luò)公開度




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms被引頻次




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms被引頻次學(xué)科排名




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms年度引用




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms年度引用學(xué)科排名




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms讀者反饋




書目名稱Partial Differential Inequalities with Nonlinear Convolution Terms讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:58:33 | 只看該作者
第141535主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:40:38 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 08:15:08 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 10:35:51 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 15:43:09 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 17:30:52 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 21:16:43 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 05:06:45 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 06:36:53 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 18:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南京市| 商洛市| 同仁县| 锡林郭勒盟| 涿州市| 安平县| 托里县| 区。| 高雄市| 夏邑县| 南宁市| 重庆市| 盐亭县| 二连浩特市| 方山县| 巴南区| 介休市| 石棉县| 孝昌县| 科尔| 昌图县| 沅江市| 台湾省| 辉南县| 蓝山县| 当雄县| 土默特右旗| 瑞昌市| 牟定县| 固安县| 伊春市| 南昌县| 莱州市| 南澳县| 浮梁县| 龙口市| 长汀县| 丰城市| 金山区| 左权县| 青铜峡市|