找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Partial Differential Equations; Second Edition Emmanuele DiBenedetto Textbook 20102nd edition Birkh?user Boston 2010 Boundary value problem

[復(fù)制鏈接]
查看: 15452|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:59:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Partial Differential Equations
副標(biāo)題Second Edition
編輯Emmanuele DiBenedetto
視頻videohttp://file.papertrans.cn/742/741476/741476.mp4
概述Self-contained, elementary introduction to PDEs, primarily from a classical perspective.This 2nd edition has been streamlined and rewritten to incorporate years of classroom feedback.Examples, problem
叢書名稱Cornerstones
圖書封面Titlebook: Partial Differential Equations; Second Edition Emmanuele DiBenedetto Textbook 20102nd edition Birkh?user Boston 2010 Boundary value problem
描述This is a revised and extended version of my 1995 elementary introduction to partial di?erential equations. The material is essentially the same except for three new chapters. The ?rst (Chapter 8) is about non-linear equations of ?rst order and in particular Hamilton–Jacobi equations. It builds on the continuing idea that PDEs, although a branch of mathematical analysis, are closely related to models of physical phenomena. Such underlying physics in turn provides ideas of solvability. The Hopf variational approach to the Cauchy problem for Hamilton–Jacobi equations is one of the clearest and most incisive examples of such an interplay. The method is a perfect blend of classical mechanics, through the role and properties of the Lagrangian and Hamiltonian, and calculus of variations. A delicate issue is that of identifying “uniqueness classes. ” An e?ort has been made to extract the geometrical conditions on the graph of solutions, such as quasi-concavity, for uniqueness to hold. Chapter 9 is an introduction to weak formulations, Sobolev spaces, and direct variationalmethods for linear and quasi-linearelliptic equations. While terse, the material on Sobolev spaces is reasonably compl
出版日期Textbook 20102nd edition
關(guān)鍵詞Boundary value problem; Cauchy--Kowalewski Theorem; Conservation Laws; Degiorgi Classes; Elliptic Theory
版次2
doihttps://doi.org/10.1007/978-0-8176-4552-6
isbn_ebook978-0-8176-4552-6Series ISSN 2197-182X Series E-ISSN 2197-1838
issn_series 2197-182X
copyrightBirkh?user Boston 2010
The information of publication is updating

書目名稱Partial Differential Equations影響因子(影響力)




書目名稱Partial Differential Equations影響因子(影響力)學(xué)科排名




書目名稱Partial Differential Equations網(wǎng)絡(luò)公開度




書目名稱Partial Differential Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Partial Differential Equations被引頻次




書目名稱Partial Differential Equations被引頻次學(xué)科排名




書目名稱Partial Differential Equations年度引用




書目名稱Partial Differential Equations年度引用學(xué)科排名




書目名稱Partial Differential Equations讀者反饋




書目名稱Partial Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:54:19 | 只看該作者
Emmanuele DiBenedetto’schen Gelehrten erhalten. In diesem Aufsatz wird versucht, die Genossenschaften in der bestehenden Literatur zur Produktionsorganisation innerhalb der Marx’schen Tradition zu verorten, wobei die Unklarheiten und Streitigkeiten über den Platz der Genossenschaften im Marx’schen Schema der Dinge berüc
地板
發(fā)表于 2025-3-22 08:13:49 | 只看該作者
5#
發(fā)表于 2025-3-22 08:43:58 | 只看該作者
6#
發(fā)表于 2025-3-22 13:22:33 | 只看該作者
7#
發(fā)表于 2025-3-22 18:01:33 | 只看該作者
,Quasi-Linear Equations and the Cauchy–Kowalewski Theorem,
8#
發(fā)表于 2025-3-22 22:29:57 | 只看該作者
Boundary Value Problems by Double-Layer Potentials,
9#
發(fā)表于 2025-3-23 02:11:49 | 只看該作者
10#
發(fā)表于 2025-3-23 07:52:22 | 只看該作者
2197-182X d. Chapter 9 is an introduction to weak formulations, Sobolev spaces, and direct variationalmethods for linear and quasi-linearelliptic equations. While terse, the material on Sobolev spaces is reasonably compl978-0-8176-4552-6Series ISSN 2197-182X Series E-ISSN 2197-1838
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大关县| 吴旗县| 永康市| 六盘水市| 济源市| 桑日县| 周至县| 莎车县| 海安县| 南和县| 北京市| 铜梁县| 黑河市| 揭西县| 庆阳市| 东乡县| 永兴县| 全南县| 逊克县| 连江县| 岳普湖县| 仁怀市| 玉门市| 南通市| 宜州市| 中阳县| 全椒县| 奈曼旗| 宜黄县| 云安县| 富裕县| 古丈县| 岫岩| 和龙市| 仲巴县| 闵行区| 理塘县| 凯里市| 惠来县| 宜兴市| 无棣县|