找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Partial Differential Equations; Emmanuele DiBenedetto Textbook 19951st edition Birkh?user Boston 1995 Conservation Laws.Elliptic Theory.Pa

[復(fù)制鏈接]
查看: 43477|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:11:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Partial Differential Equations
編輯Emmanuele DiBenedetto
視頻videohttp://file.papertrans.cn/742/741475/741475.mp4
圖書(shū)封面Titlebook: Partial Differential Equations;  Emmanuele DiBenedetto Textbook 19951st edition Birkh?user Boston 1995 Conservation Laws.Elliptic Theory.Pa
描述This text is meant to be a self-contained, elementary introduction to Partial Differential Equations, assuming only advanced differential calculus and some basic LP theory. Although the basic equations treated in this book, given its scope, are linear, we have made an attempt to approach them from a nonlinear perspective. Chapter I is focused on the Cauchy-Kowaleski theorem. We discuss the notion of characteristic surfaces and use it to classify partial differential equations. The discussion grows out of equations of second order in two variables to equations of second order in N variables to p.d.e.‘s of any order in N variables. In Chapters II and III we study the Laplace equation and connected elliptic theory. The existence of solutions for the Dirichlet problem is proven by the Perron method. This method clarifies the structure ofthe sub(super)harmonic functions and is closely related to the modern notion of viscosity solution. The elliptic theory is complemented by the Harnack and Liouville theorems, the simplest version of Schauder‘s estimates and basic LP -potential estimates. Then, in Chapter III, the Dirichlet and Neumann problems, as well as eigenvalue problems for the Lap
出版日期Textbook 19951st edition
關(guān)鍵詞Conservation Laws; Elliptic Theory; Partial Differential Equations; Viscosity Solutiions; partial differ
版次1
doihttps://doi.org/10.1007/978-1-4899-2840-5
isbn_ebook978-1-4899-2840-5
copyrightBirkh?user Boston 1995
The information of publication is updating

書(shū)目名稱Partial Differential Equations影響因子(影響力)




書(shū)目名稱Partial Differential Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱Partial Differential Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Partial Differential Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Partial Differential Equations被引頻次




書(shū)目名稱Partial Differential Equations被引頻次學(xué)科排名




書(shū)目名稱Partial Differential Equations年度引用




書(shū)目名稱Partial Differential Equations年度引用學(xué)科排名




書(shū)目名稱Partial Differential Equations讀者反饋




書(shū)目名稱Partial Differential Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:24:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:18:18 | 只看該作者
地板
發(fā)表于 2025-3-22 08:10:40 | 只看該作者
5#
發(fā)表于 2025-3-22 09:39:23 | 只看該作者
The Laplace Equation,Let Ω be a domain in .., . ≥ 2, whose boundary ?Ω is of class ...
6#
發(fā)表于 2025-3-22 14:31:02 | 只看該作者
The Double Layer Potential and Boundary Value Problems,Let ∑ be an (. ? 1)-dimensional bounded surface in .. of class .. whose boundary Г ≡ ?∑ is an (. ? 2)-dimensional surface of class ... Fix .. ∈ ... and consider the cone . (∑, ..) generated by the half-lines originating at .. and passing through points of Г.
7#
發(fā)表于 2025-3-22 17:57:52 | 只看該作者
8#
發(fā)表于 2025-3-23 01:11:54 | 只看該作者
The Heat Equation,Consider a material homogeneous body occupying a region Ω ? ...We assume that ?Ω is of class .. and let . denote its outward unit normal. We identify the body with Ω and let . > 0 be its dimensionless conductivity.
9#
發(fā)表于 2025-3-23 04:46:26 | 只看該作者
10#
發(fā)表于 2025-3-23 08:39:41 | 只看該作者
Equations of First Order and Conservation Laws,A first-order quasi-linear p.d.e. is an expression of the form.where . ranges over a region Ω ? .., the function .: Ω → . is of class .., and.are given smooth functions of their arguments.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三亚市| 商都县| 河曲县| 广河县| 邯郸县| 和静县| 凤凰县| 琼海市| 隆安县| 如东县| 疏勒县| 桂林市| 靖边县| 铅山县| 丹寨县| 普格县| 黔西县| 沈丘县| 耿马| 泰来县| 通山县| 湛江市| 台湾省| 庆安县| 新沂市| 枣庄市| 郸城县| 铜山县| 扎赉特旗| 沾化县| 宜城市| 山阴县| 鄂托克旗| 河东区| 宝坻区| 商水县| 怀安县| 遵化市| 上高县| 普兰县| 汝阳县|