找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Parametrized, Deformed and General Neural Networks; George A. Anastassiou Book 2023 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Aggrief
21#
發(fā)表于 2025-3-25 05:32:42 | 只看該作者
22#
發(fā)表于 2025-3-25 07:30:53 | 只看該作者
Banach Space Valued Ordinary and Fractional Neural Networks Approximations Based on the Parametrized Gudermannian Function,or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative or fractional derivatives.
23#
發(fā)表于 2025-3-25 15:29:37 | 只看該作者
Banach Space Valued Univariate Neural Network Approximation Based on Parametrized Error Activation Function,uasi-interpolation Banach space valued neural network operators. We perform also the related Banach space valued fractional approximation. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued
24#
發(fā)表于 2025-3-25 17:38:07 | 只看該作者
Banach Space Valued Multivariate Multi Layer Neural Network Approximation Based on Parametrized Error Activation Function,e normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types, these correspond to hidden multi-layer neural networks. The approximations are derived by establishing multidimensio
25#
發(fā)表于 2025-3-25 22:20:55 | 只看該作者
26#
發(fā)表于 2025-3-26 03:00:00 | 只看該作者
27#
發(fā)表于 2025-3-26 06:49:55 | 只看該作者
28#
發(fā)表于 2025-3-26 10:10:18 | 只看該作者
29#
發(fā)表于 2025-3-26 12:43:05 | 只看該作者
30#
發(fā)表于 2025-3-26 20:28:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 15:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辽宁省| 阳高县| 恭城| 昌吉市| 河南省| 武冈市| 镇坪县| 正定县| 仙游县| 聂荣县| 内江市| 德安县| 郎溪县| 历史| 石泉县| 绥中县| 酒泉市| 仪陇县| 吴江市| 邛崃市| 酉阳| 闵行区| 特克斯县| 黔东| 淮南市| 黎平县| 石城县| 乐山市| 温泉县| 新平| 银川市| 文登市| 浦北县| 古浪县| 安平县| 福鼎市| 五莲县| 万安县| 常德市| 东至县| 屯门区|