找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics; V. I. Shalashilin,E. B. Kuznetsov Book 2003 Spri

[復(fù)制鏈接]
查看: 46325|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:28:23 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics
編輯V. I. Shalashilin,E. B. Kuznetsov
視頻videohttp://file.papertrans.cn/742/741163/741163.mp4
圖書(shū)封面Titlebook: Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics;  V. I. Shalashilin,E. B. Kuznetsov Book 2003 Spri
描述A decade has passed since Problems of Nonlinear Deformation, the first book by E.I. Grigoliuk: and V.I. Shalashilin was published. That work gave a systematic account of the parametric continuation method. Ever since, the understanding of this method has sufficiently broadened. Previously this method was considered as a way to construct solution sets of nonlinear problems with a parameter. Now it is c1ear that one parametric continuation algorithm can efficiently work for building up any parametric set. This fact significantly widens its potential applications. A curve is the simplest example of such a set, and it can be used for solving various problems, inc1uding the Cauchy problem for ordinary differential equations (ODE), interpolation and approximation of curves, etc. Research in this area has led to exciting results. The most interesting of such is the understanding and proof of the fact that the length of the arc calculated along this solution curve is the optimal continuation parameter for this solution. We will refer to the continuation solution with the optimal parameter as the best parametrization and in this book we have applied this method to variable c1asses of proble
出版日期Book 2003
關(guān)鍵詞Approximation; Boundary value problem; Interpolation; Numerical integration; Potential; algorithms; ordina
版次1
doihttps://doi.org/10.1007/978-94-017-2537-8
isbn_softcover978-90-481-6391-5
isbn_ebook978-94-017-2537-8
copyrightSpringer Science+Business Media Dordrecht 2003
The information of publication is updating

書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics影響因子(影響力)




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics影響因子(影響力)學(xué)科排名




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics被引頻次




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics被引頻次學(xué)科排名




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics年度引用




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics年度引用學(xué)科排名




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics讀者反饋




書(shū)目名稱Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:14:03 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:54:18 | 只看該作者
地板
發(fā)表于 2025-3-22 08:24:35 | 只看該作者
5#
發(fā)表于 2025-3-22 09:10:39 | 只看該作者
6#
發(fā)表于 2025-3-22 13:03:17 | 只看該作者
V. I. Shalashilin,E. B. Kuznetsovdevelopment with new challenges too. Innovative?chassis systems have to provide solutions for automated driving. The efficient chassis of the future also has to keep?an eye on CO2 targets, comfort and customer focus at all times. A modern chassis has to provide for this in the form?of innovations wh
7#
發(fā)表于 2025-3-22 18:05:53 | 只看該作者
V. I. Shalashilin,E. B. Kuznetsovdevelopment with new challenges too. Innovative?chassis systems have to provide solutions for automated driving. The efficient chassis of the future also has to keep?an eye on CO2 targets, comfort and customer focus at all times. A modern chassis has to provide for this in the form?of innovations wh
8#
發(fā)表于 2025-3-23 00:13:13 | 只看該作者
V. I. Shalashilin,E. B. Kuznetsovie Gesellschaft zum Gegenstand einer dialektischen Soziologie zu machen. Das bedeutet, Gesellschaft sowohl als objektive Realit?t wie auch als subjektive Wirklichkeit zu konzipieren. Solch ein Gegenstand l?sst sich in einer Theorie unterbringen, die strukturalistische wie auch konstruktivistische El
9#
發(fā)表于 2025-3-23 02:04:34 | 只看該作者
V. I. Shalashilin,E. B. Kuznetsov nimmt dazu die bildende Kunst zu Hilfe und l?sst den Schmiedegott Hephaistos – mitten in einem barbarischen Krieg – auf einen Schild für den Helden Achill Visionen eines sch?neren, friedlichen Lebens malen. Mit dieser Schildbemalung kam ein wunderbarer Gedanke in die Welt und wurde – nicht minder w
10#
發(fā)表于 2025-3-23 06:52:22 | 只看該作者
V. I. Shalashilin,E. B. Kuznetsovtig erneuert sich Kunst und lebt von der Grenzverletzung wie dem Rahmenbruch. Der Beitrag geht anhand von Michael Hanekes . (1997 und 2007) sowie Christine Cynns und Joshua Oppenheimers . (2013) der Frage nach, ob und wenn ja, wie sich diese Rahmenbrüche mit den Gesetzen der Immersion selbst vertrag
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 18:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚州市| 喜德县| 花垣县| 武义县| 长阳| 麻城市| 丰镇市| 沭阳县| 溧水县| 四平市| 汤原县| 宁海县| 察哈| 日喀则市| 拜城县| 丰都县| 长寿区| 溧阳市| 宁晋县| 潞西市| 鄂伦春自治旗| 忻州市| 察哈| 瑞安市| 南宁市| 绥中县| 普安县| 县级市| 高淳县| 昭通市| 卢湾区| 文昌市| 新平| 庆安县| 青海省| 嘉定区| 安顺市| 阜新市| 兴山县| 洛南县| 宽甸|