找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Parallel Problem Solving from Nature, PPSN XI; 11th International C Robert Schaefer,Carlos Cotta,Günter Rudolph Conference proceedings 2010

[復(fù)制鏈接]
樓主: magnify
11#
發(fā)表于 2025-3-23 12:44:41 | 只看該作者
Privacy-Preserving Multi-Objective Evolutionary Algorithmsy and security prevents their use for many security sensitive business optimization problems, such as our use case in collaborative supply chain management. We present a technique to construct privacy-preserving algorithms that address multi-objective problems and secure the entire algorithm includi
12#
發(fā)表于 2025-3-23 16:34:17 | 只看該作者
Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windowsndows, using a homogeneous fleet of vehicles with limited capacity. In this paper, we propose and analyze the performance of an improved multi-objective evolutionary algorithm, that simultaneously minimizes the number of routes, the total travel distance, and the delivery time. Empirical results ind
13#
發(fā)表于 2025-3-23 19:47:03 | 只看該作者
Speculative Evaluation in Particle Swarm Optimizatione objective function. However, some functions are more efficiently optimized with more iterations and fewer particles. Accordingly, we take inspiration from speculative execution performed in modern processors and propose speculative evaluation in PSO (SEPSO). Future positions of the particles are s
14#
發(fā)表于 2025-3-23 23:25:04 | 只看該作者
15#
發(fā)表于 2025-3-24 05:40:18 | 只看該作者
16#
發(fā)表于 2025-3-24 07:03:28 | 只看該作者
Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Spacepopulation are non-dominated with each other in many-objective EMO algorithms, we may need a different fitness evaluation scheme from the case of two and three objectives. One difficulty in the design of many-objective EMO algorithms is that we cannot visually observe the behavior of multiobjective
17#
發(fā)表于 2025-3-24 12:11:54 | 只看該作者
18#
發(fā)表于 2025-3-24 16:43:37 | 只看該作者
GPGPU-Compatible Archive Based Stochastic Ranking Evolutionary Algorithm (G-ASREA) for Multi-Objective Optimizationposed, that ranks the population with respect to an archive of non-dominated solutions. It reduces the complexity of the deterministic ranking operator from .(..) to .(.) and further speeds up ranking on GPU..Experiments compare G-ASREA with a CPU version of ASREA and NSGA-II on ZDT test functions f
19#
發(fā)表于 2025-3-24 19:15:06 | 只看該作者
Hybrid Directional-Biased Evolutionary Algorithm for Multi-Objective Optimization of the multi-objective 0/1 knapsack problem. Although the conventional Multi-objective Optimization Evolutionary Algorithms (MOEAs) regard the weights of all objective functions as equally, hIDEA biases the weights of the objective functions in order to search not only the center of true Pareto opt
20#
發(fā)表于 2025-3-25 02:06:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 17:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁化县| 普兰店市| 呼伦贝尔市| 宝山区| 宝应县| 沅陵县| 大化| 龙江县| 六安市| 扎囊县| 慈利县| 绥阳县| 水富县| 永平县| 荥经县| 包头市| 台东县| 玉门市| 大埔县| 班玛县| 南安市| 西乡县| 祥云县| 邳州市| 习水县| 乌兰察布市| 大化| 平顶山市| 龙胜| 龙江县| 东安县| 九龙城区| 新余市| 工布江达县| 朝阳市| 滨州市| 曲靖市| 迁安市| 象山县| 古丈县| 寻乌县|