找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Painlevé III: A Case Study in the Geometry of Meromorphic Connections; Martin A. Guest,Claus Hertling Book 2017 Springer International Pub

[復(fù)制鏈接]
查看: 43967|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:43:30 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections
編輯Martin A. Guest,Claus Hertling
視頻videohttp://file.papertrans.cn/741/740486/740486.mp4
概述The first monograph on Painlevé equations to treat both classical local aspects and modern global aspects simultaneously.Introduces a new method in the study of Painlevé equations, combining local ana
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Painlevé III: A Case Study in the Geometry of Meromorphic Connections;  Martin A. Guest,Claus Hertling Book 2017 Springer International Pub
描述.The purpose of this monograph is two-fold:? it introduces a conceptual language for the geometrical objects underlying Painlevé equations,? and it offers new results on a particular Painlevé III equation of type??PIII (D6), called?PIII (0, 0, 4, ?4), describing its relation to isomonodromic families of vector bundles on?P1??with meromorphic connections.? This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics.?? It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections.. . Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R>0 (with or without singularities) are addressed.? These provide examples of variations of TERP structures, which are related to?.?tt?.?geometry and harmonic bundles.?. ?. As an application, a new global picture o0 is given..
出版日期Book 2017
關(guān)鍵詞Painlevé III; movable poles; isomonodromic connections; Riemann-Hilbert map; monodromy data; TERP-structu
版次1
doihttps://doi.org/10.1007/978-3-319-66526-9
isbn_softcover978-3-319-66525-2
isbn_ebook978-3-319-66526-9Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections影響因子(影響力)




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections影響因子(影響力)學(xué)科排名




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections網(wǎng)絡(luò)公開度




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections被引頻次




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections被引頻次學(xué)科排名




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections年度引用




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections年度引用學(xué)科排名




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections讀者反饋




書目名稱Painlevé III: A Case Study in the Geometry of Meromorphic Connections讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:52:38 | 只看該作者
第140486主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 02:56:01 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 05:32:51 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:45:51 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 13:47:35 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 18:32:30 | 只看該作者
7樓
8#
發(fā)表于 2025-3-22 23:59:47 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 04:38:42 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 05:48:47 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
财经| 中方县| 永福县| 江口县| 巩留县| 改则县| 武穴市| 赤城县| 香河县| 东至县| 松潘县| 青海省| 昌黎县| 绥棱县| 台安县| 桂平市| 九江市| 洛浦县| 大城县| 清镇市| 邳州市| 运城市| 全椒县| 武义县| 新巴尔虎右旗| 济源市| 舞阳县| 乌拉特中旗| 奎屯市| 从江县| 湖口县| 大方县| 大连市| 平果县| 阿克陶县| 尼玛县| 山东| 新建县| 永顺县| 黎平县| 双桥区|