找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Padé Methods for Painlevé Equations; Hidehito Nagao,Yasuhiko Yamada Book 2021 Springer Nature Singapore Pte Ltd. 2021 Padé approximation/i

[復(fù)制鏈接]
查看: 34562|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:02:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Padé Methods for Painlevé Equations
編輯Hidehito Nagao,Yasuhiko Yamada
視頻videohttp://file.papertrans.cn/741/740409/740409.mp4
概述Presents an elemental method, assuming only standard linear algebra and complex analysis.Allows target equations such as Painlevé and Garnier systems to arise naturally through suitable Padé problems.
叢書(shū)名稱(chēng)SpringerBriefs in Mathematical Physics
圖書(shū)封面Titlebook: Padé Methods for Painlevé Equations;  Hidehito Nagao,Yasuhiko Yamada Book 2021 Springer Nature Singapore Pte Ltd. 2021 Padé approximation/i
描述The isomonodromic deformation equations such as the Painlevé and Garnier systems are an important class of nonlinear differential equations in mathematics and mathematical physics. For discrete analogs of these equations in particular, much progress has been made in recent decades. Various approaches to such isomonodromic equations are known: the Painlevé test/Painlevé property, reduction of integrable hierarchy, the Lax formulation, algebro-geometric methods, and others. Among them, the Padé method explained in this book provides a simple approach to those equations in both continuous and discrete cases..For a given function .f.(.x.), the Padé approximation/interpolation supplies the rational functions .P.(.x.), .Q.(.x.) as approximants such as .f.(.x.)~.P.(.x.)/.Q.(.x.). The basic idea of the Padé method is to consider the linear differential (or difference) equations satisfied by .P.(.x.) and .f.(.x.).Q.(.x.). In choosing the suitable approximation problem, the linear differential equations give the Lax pair for some isomonodromic equations. Although this relation between the isomonodromic equations and Padé approximations has been known classically, a systematic study including
出版日期Book 2021
關(guān)鍵詞Padé approximation/interpolation; (Discrete) Painlvé and Garnier equations; Isomonodromic system, Lax
版次1
doihttps://doi.org/10.1007/978-981-16-2998-3
isbn_softcover978-981-16-2997-6
isbn_ebook978-981-16-2998-3Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書(shū)目名稱(chēng)Padé Methods for Painlevé Equations影響因子(影響力)




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations被引頻次




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations被引頻次學(xué)科排名




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations年度引用




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations年度引用學(xué)科排名




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations讀者反饋




書(shū)目名稱(chēng)Padé Methods for Painlevé Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:36:36 | 只看該作者
第140409主題貼--第2樓 (沙發(fā))
板凳
發(fā)表于 2025-3-22 00:58:09 | 只看該作者
板凳
地板
發(fā)表于 2025-3-22 06:26:04 | 只看該作者
第4樓
5#
發(fā)表于 2025-3-22 09:42:34 | 只看該作者
5樓
6#
發(fā)表于 2025-3-22 14:34:55 | 只看該作者
6樓
7#
發(fā)表于 2025-3-22 19:59:19 | 只看該作者
7樓
8#
發(fā)表于 2025-3-23 00:25:44 | 只看該作者
8樓
9#
發(fā)表于 2025-3-23 01:29:36 | 只看該作者
9樓
10#
發(fā)表于 2025-3-23 08:59:26 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
齐齐哈尔市| 巧家县| 武义县| 页游| 湖北省| 治多县| 满洲里市| 灯塔市| 保靖县| 万盛区| 佛山市| 镶黄旗| 紫云| 天全县| 行唐县| 青海省| 当雄县| 南乐县| 彰武县| 东方市| 宁波市| 竹北市| 金沙县| 涟水县| 岳池县| 延吉市| 洛川县| 章丘市| 广汉市| 长海县| 类乌齐县| 尉氏县| 阿拉尔市| 伽师县| 镇江市| 连城县| 温泉县| 锡林郭勒盟| 隆尧县| 长沙县| 广安市|