找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Outlier Analysis; Charu C. Aggarwal Book 20131st edition Springer Science+Business Media New York 2013 Data Analytics.Data Mining.Machine

[復(fù)制鏈接]
查看: 18221|回復(fù): 52
樓主
發(fā)表于 2025-3-21 19:17:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Outlier Analysis
編輯Charu C. Aggarwal
視頻videohttp://file.papertrans.cn/706/705125/705125.mp4
概述Each chapter contains key research content on the topic, case studies, extensive bibliographic notes and the future direction of research in this field.Covers applications for credit card fraud, netwo
圖書(shū)封面Titlebook: Outlier Analysis;  Charu C. Aggarwal Book 20131st edition Springer Science+Business Media New York 2013 Data Analytics.Data Mining.Machine
描述With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions– the data can be of any type, structured or unstructured, and may be extremely large..Outlier Analysis.?is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques ?commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data ?domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as ?credit card fraud detection
出版日期Book 20131st edition
關(guān)鍵詞Data Analytics; Data Mining; Machine Learning; Outlier Analysis
版次1
doihttps://doi.org/10.1007/978-1-4614-6396-2
isbn_ebook978-1-4614-6396-2
copyrightSpringer Science+Business Media New York 2013
The information of publication is updating

書(shū)目名稱Outlier Analysis影響因子(影響力)




書(shū)目名稱Outlier Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Outlier Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Outlier Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Outlier Analysis被引頻次




書(shū)目名稱Outlier Analysis被引頻次學(xué)科排名




書(shū)目名稱Outlier Analysis年度引用




書(shū)目名稱Outlier Analysis年度引用學(xué)科排名




書(shū)目名稱Outlier Analysis讀者反饋




書(shū)目名稱Outlier Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:13:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:06:26 | 只看該作者
地板
發(fā)表于 2025-3-22 06:00:35 | 只看該作者
Probabilistic and Statistical Models for Outlier Detection,n practical issues such as data representation or computational efficiency. Nevertheless, the underlying mathematical models are extremely useful, and have eventually been adapted to a variety of computational scenarios.
5#
發(fā)表于 2025-3-22 12:17:32 | 只看該作者
Time Series and Multidimensional Streaming Outlier Detection,tream may not be available in real time, but may be available at a later stage for offline processing. In such cases, the advantage of hind-sight can allow the discovery of better outliers with more sophisticated models.
6#
發(fā)表于 2025-3-22 15:18:11 | 只看該作者
Outlier Detection in Discrete Sequences,trusion detection and biological data applications. It is to be noted that in some domains such as intrusion detection and system diagnosis, the discrete sequences are caused by ., whereas in other domains such as biological data, the discrete sequences are caused by ..
7#
發(fā)表于 2025-3-22 17:21:44 | 只看該作者
8#
發(fā)表于 2025-3-22 23:18:20 | 只看該作者
9#
發(fā)表于 2025-3-23 01:35:16 | 只看該作者
https://doi.org/10.1007/978-1-4614-6396-2Data Analytics; Data Mining; Machine Learning; Outlier Analysis
10#
發(fā)表于 2025-3-23 05:51:50 | 只看該作者
Springer Science+Business Media New York 2013
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
淮阳县| 兴安盟| 瓦房店市| 大安市| 彭阳县| 刚察县| 油尖旺区| 宜城市| 宣化县| 九寨沟县| 清丰县| 西乡县| 临汾市| 平顶山市| 紫云| 云阳县| 泸西县| 民乐县| 板桥市| 邯郸市| 和龙市| 丹凤县| 清水县| 洪雅县| 正安县| 武隆县| 嘉祥县| 佳木斯市| 博野县| 黔西| 怀化市| 赣榆县| 乾安县| 福清市| 陆川县| 宜宾县| 建始县| 电白县| 平南县| 安龙县| 兴业县|