找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Systems and Convolution Operators; Robert L. Ellis,Israel Gohberg Book 2003 Springer Basel AG 2003 C*-algebra.Operator theory.c

[復(fù)制鏈接]
樓主: MEDAL
41#
發(fā)表于 2025-3-28 17:29:35 | 只看該作者
Convolution Equations on a Finite Interval,on .. and on .. (0,.) and on .. (0, .). Here ... (0, .) denotes the Banach space of all functions . =(.........). on (0, .) with ..,...,.. in ..(0, .) and with.We will abbreviate this norm to ‖. ‖ .. .. is defined similarly. An operator in the form of (0.1) we will refer to simply as a convolution operator on a finite interval.
42#
發(fā)表于 2025-3-28 19:16:51 | 只看該作者
43#
發(fā)表于 2025-3-28 23:46:32 | 只看該作者
44#
發(fā)表于 2025-3-29 04:24:34 | 只看該作者
Orthogonal Matrix Polynomials,This chapter is devoted to proving a matrix version of Krein’s Theorem. The proof relies on methods that are different from those used in the scalar case.
45#
發(fā)表于 2025-3-29 07:54:19 | 只看該作者
Orthogonal Operator-Valued Polynomials: First Generalization,In this chapter we will prove the first of two generalizations of Krein’s Theorem for operator-valued polynomials. The results of this chapter will be generalized in Chapter 9.
46#
發(fā)表于 2025-3-29 13:16:08 | 只看該作者
Orthogonal Operator-Valued Polynomials,The main topic of this chapter is the second generalization of Krein’s Theorem for operator-valued polynomials. (See Chapter 6 for the first.) Here we consider the case in which no compactness assumption are made on the coefficients.
47#
發(fā)表于 2025-3-29 18:16:18 | 只看該作者
48#
發(fā)表于 2025-3-29 22:52:01 | 只看該作者
,Discrete Infinite Analogue of Krein’s Theorem,In this chapter we obtain a generalization of Krein’s Theorem for a new case in which the finite block Toeplitz matrix of Chapter 5 is replaced by an infinite one. The role of the orthogonal matrix polynomials is played by orthogonal matrix functions.
49#
發(fā)表于 2025-3-30 00:08:40 | 只看該作者
50#
發(fā)表于 2025-3-30 07:11:36 | 只看該作者
978-3-0348-9418-0Springer Basel AG 2003
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉贤区| 大化| 卢氏县| 绥宁县| 灵山县| 邵阳县| 阜阳市| 丹东市| 万全县| 河曲县| 澎湖县| 和平县| 余江县| 彩票| 莱州市| 屯留县| 新龙县| 收藏| 佛冈县| 天柱县| 沈阳市| 贵港市| 黔西| 泌阳县| 留坝县| 遂平县| 昭平县| 平利县| 朝阳县| 九龙县| 赫章县| 雷山县| 屏东县| 建昌县| 兴城市| 社旗县| 砚山县| 社会| 开鲁县| 渑池县| 安溪县|