找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials and their Applications; Proceedings of an In Manuel Alfaro,Jesús S. Dehesa,Jaime Vinuesa Conference proceedings 1988

[復(fù)制鏈接]
樓主: Coarse
31#
發(fā)表于 2025-3-27 00:36:10 | 只看該作者
32#
發(fā)表于 2025-3-27 04:31:37 | 只看該作者
33#
發(fā)表于 2025-3-27 07:45:05 | 只看該作者
A review of orthogonal polynomials satisfying boundary value problems, The first three are classical, with well known properties, including weights, orthogonality, moments. The fourth is less well known. A real weight has not been found..All, however, are orthogonal with respect to a distributional weight . where μ. is the nth moment associated with the polynomials an
34#
發(fā)表于 2025-3-27 11:35:50 | 只看該作者
35#
發(fā)表于 2025-3-27 14:19:48 | 只看該作者
Factorization of second order difference equations and its application to orthogonal polynomials, shift operator, can be factored as the product of two first order expressions. This result is used to obtain asymptotics over the complex plane for a class of polynomials orthonormal over the real line.
36#
發(fā)表于 2025-3-27 19:03:45 | 只看該作者
The distribution of zeros of the polynomial eigenfunctions of ordinary differential operators of arlated via its moments directly in terms of the parameters which characterize the operators. Some results of K.M. Case and the authors are extended. In particular, the restriction for the degree of the polynomial coefficient of the ith-derivative to be not greater than i is relaxed. Applications to t
37#
發(fā)表于 2025-3-27 23:37:21 | 只看該作者
38#
發(fā)表于 2025-3-28 05:03:51 | 只看該作者
Associated Askey-Wilson polynomials as Laguerre-Hahn orthogonal polynomials,vided difference operator used here is essentially the Askey-Wilson operator . where y.(x) and y.(x) are the two roots of Ay.+2Bxy+Cx.++2Dy+2Ex+f=0..The related Laguerre-Hahn orthogonal polynomials are then introduced as the denominators P.,P.,… of the successive approximants Q./P. of the Gauss-Hein
39#
發(fā)表于 2025-3-28 09:48:51 | 只看該作者
40#
發(fā)表于 2025-3-28 12:54:50 | 只看該作者
978-3-540-19489-7Springer-Verlag Berlin Heidelberg 1988
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁甸县| 新宾| 梁平县| 寿宁县| 丹阳市| 封丘县| 山东省| 杂多县| 镇雄县| 岳阳市| 正宁县| 海林市| 耒阳市| 湟中县| 临漳县| 雅江县| 信丰县| 绵阳市| 赤城县| 广南县| 琼结县| 吉隆县| 镇沅| 阿克| 延安市| 饶阳县| 沛县| 漳平市| 垦利县| 花垣县| 丁青县| 屏东县| 右玉县| 吉木乃县| 当涂县| 华容县| 榆社县| 同心县| 宜君县| 西充县| 封开县|