找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Polynomials; Theory and Practice Paul Nevai Book 1990 Kluwer Academic Publishers 1990 Approximation.Jacobi.boundary element meth

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 08:50:42 | 只看該作者
52#
發(fā)表于 2025-3-30 15:32:43 | 只看該作者
53#
發(fā)表于 2025-3-30 20:06:58 | 只看該作者
54#
發(fā)表于 2025-3-30 23:49:52 | 只看該作者
An Introduction to Group Representations and Orthogonal Polynomials,ions for the rotation groups in Euclidean space (ultraspherical polynomials), and the matrix elements of .(2) (Jacobi polynomials) are discussed. A general theory for finite groups acting on graphs, giving a finite set of discrete orthogonal polynomials is given. Explicit examples include graphs giving the Krawtchouk and Hahn polynomials.
55#
發(fā)表于 2025-3-31 04:39:30 | 只看該作者
56#
發(fā)表于 2025-3-31 06:02:24 | 只看該作者
Orthogonal Polynomials978-94-009-0501-6Series ISSN 1389-2185
57#
發(fā)表于 2025-3-31 09:48:28 | 只看該作者
Characterization Theorems for Orthogonal Polynomials,We survey in this paper characterization theorems dealing with polynomial sets which are orthogonal on the real line.
58#
發(fā)表于 2025-3-31 14:32:53 | 只看該作者
59#
發(fā)表于 2025-3-31 20:53:37 | 只看該作者
Orthogonal Polynomials and Functional Analysis,This paper studies the measure of orthogonality for a system of polynomials defined by a three term recursion formula, using the techniques of operator theory and functional analysis. Spectral properties of self-adjoint operators and compact operators, perturbation theorems, and commutator equations are used in the development of the ideas.
60#
發(fā)表于 2025-4-1 00:16:10 | 只看該作者
Orthogonal Polynomials Associated with Root Systems,The orthogonal polynomials that are the subject of these lectures are Laurent polynomials in several variables. They depend rationally on two parameters q and t, and there is a family of them attached to each root system R. For particular values of the parameters q and t, these polynomials reduce to objects familiar in representation theory:
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通城县| 高要市| 宣威市| 福州市| 汝州市| 廉江市| 台安县| 文昌市| 平南县| 望城县| 屏东县| 朔州市| 来凤县| 长泰县| 且末县| 大关县| 林甸县| 班玛县| 双辽市| 涟源市| 雅江县| 襄城县| 南昌市| 民勤县| 台前县| 本溪| 建昌县| 福清市| 张家川| 台东县| 洪泽县| 凤山市| 黎城县| 岢岚县| 石家庄市| 三原县| 黎城县| 赤城县| 永春县| 杨浦区| 建昌县|