找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Latin Squares Based on Groups; Anthony B. Evans Book 2018 Springer International Publishing AG, part of Springer Nature 2018 Or

[復(fù)制鏈接]
樓主: McKinley
11#
發(fā)表于 2025-3-23 10:13:16 | 只看該作者
Elementary Abelian Groups. Istudy of orthomorphism graphs of these groups. In particular, any function from a finite field to itself, and thus any orthomorphism of the additive group of the field, can be realized as a polynomial function. Several interesting classes of orthomorphisms will be described as sets of orthomorphism
12#
發(fā)表于 2025-3-23 16:00:03 | 只看該作者
Elementary Abelian Groups. II orthomorphisms, orthomorphisms of the form .?.; and quadratic orthomorphisms, orthomorphisms of the form . maps to . if . is a square and . if . is a nonsquare. In this chapter we generalize linear and quadratic orthomorphisms by partitioning the elements of a finite field into cyclotomy classes {.
13#
發(fā)表于 2025-3-23 20:44:01 | 只看該作者
Extensions of Orthomorphism Graphs abelian groups that have received significant attention are the cyclic groups and direct products of elementary abelian groups. In this chapter we will define the extension of the orthomorphism graph of a group . by a group .: this is an orthomorphism graph of .?×?.. We will discuss two special cas
14#
發(fā)表于 2025-3-24 02:00:25 | 只看該作者
(,) for Some Classes of Nonabelian Groups only classes of nonabelian groups for which attempts have been made to improve the lower bound for .(.) are the dihedral groups and some of the linear groups of even characteristic. We will present these improvements in this chapter. We will derive improved lower bounds for .(.), . the dihedral gro
15#
發(fā)表于 2025-3-24 05:13:31 | 只看該作者
16#
發(fā)表于 2025-3-24 09:55:25 | 只看該作者
17#
發(fā)表于 2025-3-24 10:49:44 | 只看該作者
Related Topics and orthomorphisms of groups. In our discussion of these topics, we will outline the work that has been done, presenting many of the results without proofs. Our emphasis will be on the role played by orthomorphisms and related mappings. We will introduce classes of complete mappings and orthomorphi
18#
發(fā)表于 2025-3-24 14:51:31 | 只看該作者
19#
發(fā)表于 2025-3-24 19:46:50 | 只看該作者
20#
發(fā)表于 2025-3-25 01:05:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
藁城市| 罗源县| 木兰县| 本溪市| 永清县| 贵南县| 乐平市| 夏津县| 罗定市| 广德县| 刚察县| 福鼎市| 陕西省| 铁力市| 花垣县| 阜新市| 安塞县| 乐至县| 克东县| 界首市| 广河县| 扎兰屯市| 绥阳县| 石狮市| 丹东市| 绩溪县| 吴川市| 江华| 忻州市| 江都市| 兴业县| 客服| 金坛市| 赣榆县| 肥西县| 兴国县| 沭阳县| 保德县| 永年县| 翁牛特旗| 白城市|