找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Orthogonal Designs; Hadamard Matrices, Q Jennifer Seberry Book 2017 Springer International Publishing AG 2017 Combinatorics.Hurwitz-Radon a

[復(fù)制鏈接]
查看: 6875|回復(fù): 41
樓主
發(fā)表于 2025-3-21 17:09:11 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Orthogonal Designs
副標題Hadamard Matrices, Q
編輯Jennifer Seberry
視頻videohttp://file.papertrans.cn/705/704701/704701.mp4
概述Provides a unique overview of the subject.Provides insights into some of the current communications coding theories.Can be considered as the foundation of a completely new area of discrete mathematics
圖書封面Titlebook: Orthogonal Designs; Hadamard Matrices, Q Jennifer Seberry Book 2017 Springer International Publishing AG 2017 Combinatorics.Hurwitz-Radon a
描述.Orthogonal designs have proved fundamental to constructing code division multiple antenna systems for more efficient mobile communications. Starting with basic theory, this book develops the algebra and combinatorics to create new communications modes. Intended primarily for researchers, it is also useful for graduate students wanting to understand some of the current communications coding theories..
出版日期Book 2017
關(guān)鍵詞Combinatorics; Hurwitz-Radon algebras; Hadamard matrices; Mathematical computation; Sequences; matrix the
版次1
doihttps://doi.org/10.1007/978-3-319-59032-5
isbn_softcover978-3-319-86535-5
isbn_ebook978-3-319-59032-5
copyrightSpringer International Publishing AG 2017
The information of publication is updating

書目名稱Orthogonal Designs影響因子(影響力)




書目名稱Orthogonal Designs影響因子(影響力)學(xué)科排名




書目名稱Orthogonal Designs網(wǎng)絡(luò)公開度




書目名稱Orthogonal Designs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Orthogonal Designs被引頻次




書目名稱Orthogonal Designs被引頻次學(xué)科排名




書目名稱Orthogonal Designs年度引用




書目名稱Orthogonal Designs年度引用學(xué)科排名




書目名稱Orthogonal Designs讀者反饋




書目名稱Orthogonal Designs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:41:49 | 只看該作者
地板
發(fā)表于 2025-3-22 04:46:10 | 只看該作者
5#
發(fā)表于 2025-3-22 09:26:35 | 只看該作者
https://doi.org/10.1007/978-3-319-59032-5Combinatorics; Hurwitz-Radon algebras; Hadamard matrices; Mathematical computation; Sequences; matrix the
6#
發(fā)表于 2025-3-22 16:01:28 | 只看該作者
Jennifer SeberryProvides a unique overview of the subject.Provides insights into some of the current communications coding theories.Can be considered as the foundation of a completely new area of discrete mathematics
7#
發(fā)表于 2025-3-22 17:33:26 | 只看該作者
Book 2017with basic theory, this book develops the algebra and combinatorics to create new communications modes. Intended primarily for researchers, it is also useful for graduate students wanting to understand some of the current communications coding theories..
8#
發(fā)表于 2025-3-22 22:04:39 | 只看該作者
Orthogonal Designs,An orthogonal design of order ., type ., denoted, ., . positive integers, is an . matrix ., with entries from . (the . commuting indeterminates) satisfying.
9#
發(fā)表于 2025-3-23 02:40:07 | 只看該作者
Some Algebraic and Combinatorial Non-existence Results,In this chapter we intend to explain some easily obtained non-existence theorems for orthogonal designs. Many of these results will be generalized in later chapters, but we feel that these simpler special cases will give the reader an idea as to how the subject developed and what sorts of propositions might be expected.
10#
發(fā)表于 2025-3-23 07:29:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玛多县| 大名县| 大石桥市| 海盐县| 高邮市| 安达市| 万山特区| 屏南县| 洛南县| 泰顺县| 平舆县| 蒲城县| 驻马店市| 隆昌县| 靖远县| 保德县| 临猗县| 涿州市| 康马县| 东阿县| 黑山县| 孝义市| 武清区| 青铜峡市| 武城县| 阿拉善左旗| 扶风县| 韶山市| 衡水市| 华容县| 蒙自县| 上犹县| 东乡族自治县| 香格里拉县| 湟中县| 六安市| 乌兰县| 阿拉善左旗| 临潭县| 南汇区| 东阳市|