找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integr; George A. Anastassiou Book 2019 Spri

[復(fù)制鏈接]
樓主: DEBUT
21#
發(fā)表于 2025-3-25 06:18:18 | 只看該作者
https://doi.org/10.1007/978-3-030-04287-5Non-Additive Integrals Neural Network Operators; Choquet Integral Approximators; Shilkret Integral App
22#
發(fā)表于 2025-3-25 09:14:56 | 只看該作者
,Approximation with Rates by Kantorovich–Choquet Quasi-interpolation Neural Network Operators,th respect to supremum norm. This is done with rates using the first univariate and multivariate moduli of continuity. We approximate continuous and bounded functions on . .. When they are also uniformly continuous we have pointwise and uniform convergences. It follows [.].
23#
發(fā)表于 2025-3-25 14:36:56 | 只看該作者
Mixed Conformable and Iterated Fractional Quantitative Approximation by Choquet Integrals, given a precise Choquet integral interpretation. Initially we start with the research of the mixed conformable and iterated fractional rate of the convergence of the well-known Bernstein-Kantorovich–Choquet and Bernstein–Durrweyer–Choquet polynomial Choquet-integral operators.
24#
發(fā)表于 2025-3-25 15:54:13 | 只看該作者
25#
發(fā)表于 2025-3-25 20:39:13 | 只看該作者
George A. AnastassiouPresents a range of original approaches to approximation.All chapters are self-contained and can be read independently.Provides a deeper formal analysis of several issues that are relevant to decision
26#
發(fā)表于 2025-3-26 01:28:59 | 只看該作者
Springer Nature Switzerland AG 2019
27#
發(fā)表于 2025-3-26 07:36:19 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:32 | 只看該作者
Approximation with Rates by Shift Invariant Univariate Sublinear-Choquet Operators,he unit with rates. Furthermore, two examples of very general specialized operators are presented fulfilling all the above properties, the higher order of approximation of these operators is also studied. It follows [.].
29#
發(fā)表于 2025-3-26 14:41:28 | 只看該作者
30#
發(fā)表于 2025-3-26 17:25:13 | 只看該作者
Hardy Type Inequalities for Choquet Integrals,?lder’s inequalities for more than two functions and a multivariate Choquet–Fubini’s theorem. The main proving tool here is the property of comonotonicity of functions. We finish with independent estimates on left and right Riemann–Liouville–Choquet fractional integrals.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸西县| 诸城市| 和田县| 武功县| 县级市| 连平县| 太原市| 兴隆县| 交城县| 密云县| 石柱| 荆门市| 民勤县| 贡觉县| 朝阳区| 东至县| 石河子市| 丽江市| 郑州市| 台东县| 南投县| 梅州市| 安丘市| 湖州市| 沾益县| 银川市| 民县| 黔西| 即墨市| 怀宁县| 英超| 巴塘县| 盱眙县| 资溪县| 蕉岭县| 南乐县| 潍坊市| 汾阳市| 大同市| 施秉县| 崇阳县|