找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integr; George A. Anastassiou Book 2019 Spri

[復制鏈接]
樓主: DEBUT
21#
發(fā)表于 2025-3-25 06:18:18 | 只看該作者
https://doi.org/10.1007/978-3-030-04287-5Non-Additive Integrals Neural Network Operators; Choquet Integral Approximators; Shilkret Integral App
22#
發(fā)表于 2025-3-25 09:14:56 | 只看該作者
,Approximation with Rates by Kantorovich–Choquet Quasi-interpolation Neural Network Operators,th respect to supremum norm. This is done with rates using the first univariate and multivariate moduli of continuity. We approximate continuous and bounded functions on . .. When they are also uniformly continuous we have pointwise and uniform convergences. It follows [.].
23#
發(fā)表于 2025-3-25 14:36:56 | 只看該作者
Mixed Conformable and Iterated Fractional Quantitative Approximation by Choquet Integrals, given a precise Choquet integral interpretation. Initially we start with the research of the mixed conformable and iterated fractional rate of the convergence of the well-known Bernstein-Kantorovich–Choquet and Bernstein–Durrweyer–Choquet polynomial Choquet-integral operators.
24#
發(fā)表于 2025-3-25 15:54:13 | 只看該作者
25#
發(fā)表于 2025-3-25 20:39:13 | 只看該作者
George A. AnastassiouPresents a range of original approaches to approximation.All chapters are self-contained and can be read independently.Provides a deeper formal analysis of several issues that are relevant to decision
26#
發(fā)表于 2025-3-26 01:28:59 | 只看該作者
Springer Nature Switzerland AG 2019
27#
發(fā)表于 2025-3-26 07:36:19 | 只看該作者
28#
發(fā)表于 2025-3-26 11:09:32 | 只看該作者
Approximation with Rates by Shift Invariant Univariate Sublinear-Choquet Operators,he unit with rates. Furthermore, two examples of very general specialized operators are presented fulfilling all the above properties, the higher order of approximation of these operators is also studied. It follows [.].
29#
發(fā)表于 2025-3-26 14:41:28 | 只看該作者
30#
發(fā)表于 2025-3-26 17:25:13 | 只看該作者
Hardy Type Inequalities for Choquet Integrals,?lder’s inequalities for more than two functions and a multivariate Choquet–Fubini’s theorem. The main proving tool here is the property of comonotonicity of functions. We finish with independent estimates on left and right Riemann–Liouville–Choquet fractional integrals.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 22:49
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
衡阳县| 乐山市| 鹰潭市| 嘉义市| 伊通| 诏安县| 合川市| 西峡县| 武强县| 禄劝| 庆安县| 自治县| 朔州市| 宣城市| 江陵县| 安陆市| 叙永县| 禄劝| 鸡泽县| 新安县| 于都县| 夹江县| 深圳市| 临潭县| 北辰区| 平和县| 同江市| 麻阳| 江津市| 平度市| 定州市| 南江县| 彭泽县| 太和县| 民丰县| 龙门县| 东丰县| 浦北县| 外汇| 拉萨市| 南昌市|