找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ordinary Differential Equations in Rn; Problems and Methods L. C. Piccinini,G. Stampacchia,G. Vidossich Book 1984 Springer-Verlag New York

[復制鏈接]
查看: 36311|回復: 35
樓主
發(fā)表于 2025-3-21 17:06:09 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Ordinary Differential Equations in Rn
副標題Problems and Methods
編輯L. C. Piccinini,G. Stampacchia,G. Vidossich
視頻videohttp://file.papertrans.cn/704/703682/703682.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Ordinary Differential Equations in Rn; Problems and Methods L. C. Piccinini,G. Stampacchia,G. Vidossich Book 1984 Springer-Verlag New York
描述During the fifties, one of the authors, G. Stampacchia, had prepared some lecture notes on ordinary differential equations for a course in ad- analysis. These remained for a long time unused because he was no vanced longer very interested in the study of such equations. We now see, though, that numerous applications to biology, chemistry, economics, and medicine have recently been added to the traditional ones in mechanics; also, there has been in these last years a reemergence of interest in nonlinear analy- sis, of which the theory of ordinary differential euqations is one of the principal sources of methods and problems. Hence the idea to write a book. Our text, based on the old notes and experience gained in many courses, seminars, and conferences, both in Italy and abroad, aims to give a simple and rapid introduction to the various themes, problems, and methods of the theory of ordinary differential equations. The book has been conceived in such a way so that even the reader who has merely had a first course in calculus may be able to study it and to obtain a panoramic vision of the theory. We have tried to avoid abstract formalism, preferring instead a discursive style, which
出版日期Book 1984
關鍵詞Boundary value problem; Eigenvalue; Equations; Gew?hnliche Differentialgleichung; calculus; compactness; d
版次1
doihttps://doi.org/10.1007/978-1-4612-5188-0
isbn_softcover978-0-387-90723-9
isbn_ebook978-1-4612-5188-0Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer-Verlag New York Inc. 1984
The information of publication is updating

書目名稱Ordinary Differential Equations in Rn影響因子(影響力)




書目名稱Ordinary Differential Equations in Rn影響因子(影響力)學科排名




書目名稱Ordinary Differential Equations in Rn網(wǎng)絡公開度




書目名稱Ordinary Differential Equations in Rn網(wǎng)絡公開度學科排名




書目名稱Ordinary Differential Equations in Rn被引頻次




書目名稱Ordinary Differential Equations in Rn被引頻次學科排名




書目名稱Ordinary Differential Equations in Rn年度引用




書目名稱Ordinary Differential Equations in Rn年度引用學科排名




書目名稱Ordinary Differential Equations in Rn讀者反饋




書目名稱Ordinary Differential Equations in Rn讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:39:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:14:28 | 只看該作者
978-0-387-90723-9Springer-Verlag New York Inc. 1984
地板
發(fā)表于 2025-3-22 05:00:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:47:26 | 只看該作者
6#
發(fā)表于 2025-3-22 14:42:03 | 只看該作者
Existence and Uniqueness for the Cauchy Problem Under the Condition of Continuity,ition, for the functions on the right-hand side of the equation. In this chapter, we shall study the same problem but shall only assume that those functions are continuous. The biggest difference between the two cases will be that the uniqueness theorem no longer holds, as we see from the following classic example.
7#
發(fā)表于 2025-3-22 19:32:50 | 只看該作者
8#
發(fā)表于 2025-3-22 21:21:30 | 只看該作者
9#
發(fā)表于 2025-3-23 02:35:03 | 只看該作者
10#
發(fā)表于 2025-3-23 07:26:42 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
双柏县| 灵寿县| 晴隆县| 南开区| 塔城市| 锡林郭勒盟| 陈巴尔虎旗| 威宁| 苍南县| 双柏县| 遂溪县| 武强县| 渭南市| 新乐市| 山东省| 酒泉市| 奈曼旗| 赣榆县| 兴宁市| 德江县| 石屏县| 萨迦县| 盐亭县| 南川市| 普宁市| 徐州市| 芮城县| 博客| 潞西市| 偃师市| 长治县| 新营市| 三亚市| 兴城市| 繁峙县| 商城县| 阳高县| 芦溪县| 平原县| 江津市| 社旗县|