找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ordered and Turbulent Patterns in Taylor-Couette Flow; C. David Andereck,F. Hayot Book 1992 Springer Science+Business Media New York 1992

[復(fù)制鏈接]
樓主: Limbic-System
31#
發(fā)表于 2025-3-26 21:45:45 | 只看該作者
32#
發(fā)表于 2025-3-27 04:18:49 | 只看該作者
33#
發(fā)表于 2025-3-27 08:24:58 | 只看該作者
Low-Dimensional Spectral Truncations for Taylor-Couette Flow needed during time integration. The method will be applied to temporally quasiperiodic and chaotic Taylor-Couette flows, with the choice of basis functions based on previous numerical work. Implementation is in progress.
34#
發(fā)表于 2025-3-27 09:54:31 | 只看該作者
35#
發(fā)表于 2025-3-27 15:43:56 | 只看該作者
36#
發(fā)表于 2025-3-27 21:09:28 | 只看該作者
Chaotic Phase Diffusion through the Interaction of Phase Slip Processeser .. varies in space such that it becomes subcritical, . < .., in part of the system (‘subcritical ramp’), then the stable band is reduced and - in the limit of infinitely slow variations - shrinks to a single wave number.. Of particular interest in the present context is the fact, that the solutio
37#
發(fā)表于 2025-3-28 01:12:07 | 只看該作者
38#
發(fā)表于 2025-3-28 04:15:14 | 只看該作者
Instability of Taylor-Couette Flow Subjected to a Coriolis Force the nonaxisymmetric Coriolis force. Several other novel patterns also arise. At somewhat large system rotation rates, there is a direct transition from the base flow to strong spatiotemporal turbulence. At small values of Ω (where Ω is a dimensionless measure of the angular frequency of the rotatin
39#
發(fā)表于 2025-3-28 06:31:18 | 只看該作者
40#
發(fā)表于 2025-3-28 11:54:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 19:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉林市| 太白县| 浏阳市| 崇左市| 隆安县| 桐梓县| 临西县| 皮山县| 乐至县| 陆丰市| 马山县| 千阳县| 北海市| 始兴县| 内江市| 镇雄县| 娱乐| 太仓市| 三都| 阜城县| 郸城县| 凌海市| 温州市| 缙云县| 五台县| 云安县| 江城| 平果县| 历史| 威远县| 罗源县| 新安县| 台山市| 库车县| 滕州市| 海原县| 鸡西市| 阿勒泰市| 育儿| 五寨县| 铜陵市|