找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ordered Sets; An Introduction with Bernd Schr?der Textbook 2016Latest edition Springer International Publishing 2016 set theory.Algebraic T

[復(fù)制鏈接]
樓主: malignant
11#
發(fā)表于 2025-3-23 12:22:32 | 只看該作者
12#
發(fā)表于 2025-3-23 14:47:22 | 只看該作者
13#
發(fā)表于 2025-3-23 19:40:20 | 只看該作者
Lexicographic Sums,ery simple: Take an ordered set . and replace each of its points . with an ordered set ... The resulting structure will be a new, larger ordered set. It is then natural to ask how various order-theoretical properties and parameters behave under lexicographic constructions. We will revisit lexicograp
14#
發(fā)表于 2025-3-23 22:25:38 | 只看該作者
Lattices,lattice operations “supremum” and “infimum” in the power set ordered by inclusion (see Example?., part?5) and that many function spaces can be viewed as lattices (see Example?., parts?6 and?7). Lattice theory is a well developed branch of mathematics. There are many excellent texts on lattice theory
15#
發(fā)表于 2025-3-24 05:53:47 | 只看該作者
16#
發(fā)表于 2025-3-24 10:21:01 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:36 | 只看該作者
18#
發(fā)表于 2025-3-24 16:22:49 | 只看該作者
,Sets ,,?=?Hom(,,?,) and Products ,hese homomorphism sets. Hence we will investigate homomorphism sets and products of ordered sets in the same chapter. We will introduce some of the salient results on these sets, such as the fixed point theorem for products of two finite ordered sets (see Theorem?12.17), Hashimoto’s Refinement Theor
19#
發(fā)表于 2025-3-24 19:11:34 | 只看該作者
Enumeration of Ordered Sets,14) and Dedekind’s problem (Open Question?2.30) are questions like that. A counting question can be motivated by pure curiosity or, as the Kelly Lemma (see Proposition?.) in reconstruction shows, it can be a useful lemma for proving further results. The two most natural counting questions for ordere
20#
發(fā)表于 2025-3-24 23:35:50 | 只看該作者
978-3-319-80654-9Springer International Publishing 2016
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
增城市| 永德县| 婺源县| 霍城县| 白山市| 大冶市| 四平市| 潜江市| 灌云县| 乐山市| 棋牌| 阿尔山市| 稻城县| 安国市| 来安县| 天峨县| 屯门区| 扎鲁特旗| 北海市| 康马县| 盐山县| 通化县| 睢宁县| 合肥市| 舞钢市| 东安县| 中山市| 涪陵区| 峨眉山市| 石门县| 峨眉山市| 鱼台县| 南召县| 应城市| 孟津县| 海林市| 泊头市| 宽甸| 辉县市| 昆山市| 玛沁县|