找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimum Designs for Multi-Factor Models; Rainer Schwabe Book 1996 Springer-Verlag New York, Inc. 1996 Factor.Partition.Variance.addition.d

[復制鏈接]
樓主: 小費
31#
發(fā)表于 2025-3-26 23:19:46 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:12 | 只看該作者
33#
發(fā)表于 2025-3-27 05:57:10 | 只看該作者
Foundationse any inference. Therefore, we will consider the rather general situation in which the response is described by a linear model in which the response function . can be finitely parametrized in a linear way as introduced in Subsection 1.1. The performance of the statistical inference depends on the ex
34#
發(fā)表于 2025-3-27 09:58:19 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:28 | 只看該作者
Complete Product-type Interactionst first we treat the case of complete interactions which has been thoroughly investigated in the literature starting from . (1965). With respect to the methods of proof involved the present section is dedicated to the equivalence theorems which have been presented in Section 2.
36#
發(fā)表于 2025-3-27 19:12:13 | 只看該作者
Book 1996 leads to challenging optimization problems, even if the underlying relationship can be described by a linear model. Based on recent research, this book introduces the theory of optimum designs for complex models and develops general methods of reduction to marginal problems for large classes of models with relevant interaction structures.
37#
發(fā)表于 2025-3-27 22:16:15 | 只看該作者
978-0-387-94745-7Springer-Verlag New York, Inc. 1996
38#
發(fā)表于 2025-3-28 05:56:24 | 只看該作者
Optimum Designs for Multi-Factor Models978-1-4612-4038-9Series ISSN 0930-0325 Series E-ISSN 2197-7186
39#
發(fā)表于 2025-3-28 09:49:29 | 只看該作者
40#
發(fā)表于 2025-3-28 14:00:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-4038-9Factor; Partition; Variance; addition; design; interaction; matrices; model; optimization; review
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
江川县| 华蓥市| 海兴县| 六盘水市| 蓝田县| 金乡县| 通山县| 阳曲县| 阳朔县| 阳泉市| 长丰县| 剑河县| 西乡县| 和平区| 太仆寺旗| 华容县| 阳西县| 丰宁| 尤溪县| 仁化县| 奉节县| 广安市| 巴林左旗| 阿巴嘎旗| 大方县| 铅山县| 林甸县| 阿图什市| 万山特区| 瑞昌市| 鄂尔多斯市| 云霄县| 大丰市| 拉萨市| 浏阳市| 岚皋县| 兰西县| 贡觉县| 松原市| 特克斯县| 尚志市|