找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimum Designs for Multi-Factor Models; Rainer Schwabe Book 1996 Springer-Verlag New York, Inc. 1996 Factor.Partition.Variance.addition.d

[復制鏈接]
樓主: 小費
31#
發(fā)表于 2025-3-26 23:19:46 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:12 | 只看該作者
33#
發(fā)表于 2025-3-27 05:57:10 | 只看該作者
Foundationse any inference. Therefore, we will consider the rather general situation in which the response is described by a linear model in which the response function . can be finitely parametrized in a linear way as introduced in Subsection 1.1. The performance of the statistical inference depends on the ex
34#
發(fā)表于 2025-3-27 09:58:19 | 只看該作者
35#
發(fā)表于 2025-3-27 14:10:28 | 只看該作者
Complete Product-type Interactionst first we treat the case of complete interactions which has been thoroughly investigated in the literature starting from . (1965). With respect to the methods of proof involved the present section is dedicated to the equivalence theorems which have been presented in Section 2.
36#
發(fā)表于 2025-3-27 19:12:13 | 只看該作者
Book 1996 leads to challenging optimization problems, even if the underlying relationship can be described by a linear model. Based on recent research, this book introduces the theory of optimum designs for complex models and develops general methods of reduction to marginal problems for large classes of models with relevant interaction structures.
37#
發(fā)表于 2025-3-27 22:16:15 | 只看該作者
978-0-387-94745-7Springer-Verlag New York, Inc. 1996
38#
發(fā)表于 2025-3-28 05:56:24 | 只看該作者
Optimum Designs for Multi-Factor Models978-1-4612-4038-9Series ISSN 0930-0325 Series E-ISSN 2197-7186
39#
發(fā)表于 2025-3-28 09:49:29 | 只看該作者
40#
發(fā)表于 2025-3-28 14:00:10 | 只看該作者
https://doi.org/10.1007/978-1-4612-4038-9Factor; Partition; Variance; addition; design; interaction; matrices; model; optimization; review
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
抚松县| 北流市| 枝江市| 明星| 永城市| 齐齐哈尔市| 化州市| 凤台县| 右玉县| 静海县| 定兴县| 岳池县| 抚松县| 南开区| 合江县| 淄博市| 金塔县| 永川市| 喀喇| 安义县| 额敏县| 辰溪县| 两当县| 上栗县| 九江县| 防城港市| 辽阳市| 武宣县| 那坡县| 广德县| 张掖市| 永嘉县| 博白县| 沅陵县| 恩平市| 武汉市| 汶川县| 清水县| 宜阳县| 金门县| 兴山县|