找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization, Variational Analysis and Applications; IFSOVAA-2020, Varana Vivek Laha,Pierre Maréchal,S. K. Mishra Conference proceedings 20

[復(fù)制鏈接]
樓主: 尤指植物
21#
發(fā)表于 2025-3-25 06:09:10 | 只看該作者
J.-P. Dussault,M. Haddou,T. Migotit words in tweets) are greatly affected by the sparsity of the short tweet texts and the low co-occurrence rates of hashtags in tweets. Meanwhile, semantically related hashtags but using different text-expressions may show similar temporal patterns (i.e., the frequencies of hashtag usages changing
22#
發(fā)表于 2025-3-25 08:13:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:29:19 | 只看該作者
Nidhi Sharma,Jaya Bisht,S. K. Mishran (NMF) based methods have been proved to be effective in the task of community detection. However, real-world networks could be noisy and existing NMF based community detection methods are sensitive to the outliers and noise due to the utilization of the squared loss function to measure the quality
24#
發(fā)表于 2025-3-25 16:25:01 | 只看該作者
25#
發(fā)表于 2025-3-25 21:57:37 | 只看該作者
26#
發(fā)表于 2025-3-26 03:03:09 | 只看該作者
27#
發(fā)表于 2025-3-26 08:05:36 | 只看該作者
28#
發(fā)表于 2025-3-26 10:13:12 | 只看該作者
Walter Cedric Simo Tao Lee) within the allocated budget whose initial activation leads to the maximum number of influenced nodes. In reality, the influence probability between two users depends upon the context (i.e., tags). However, existing studies on this problem do not consider the tag specific influence probability. To
29#
發(fā)表于 2025-3-26 16:38:46 | 只看該作者
Vivek Laha,Rahul Kumar,Harsh Narayan Singh,S. K. Mishra) within the allocated budget whose initial activation leads to the maximum number of influenced nodes. In reality, the influence probability between two users depends upon the context (i.e., tags). However, existing studies on this problem do not consider the tag specific influence probability. To
30#
發(fā)表于 2025-3-26 17:16:43 | 只看該作者
Balendu Bhooshan Upadhyay,Priyanka Mishratagged events. These event-traces often manifest in hidden (possibly overlapping) communities of users with similar interests. Inferring these implicit communities is crucial for forming user profiles for improvements in recommendation and prediction tasks. Given only time-stamped geo-tagged traces
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
定安县| 苍山县| 金华市| 宁波市| 河东区| 大渡口区| 五台县| 刚察县| 织金县| 平湖市| 冕宁县| 垣曲县| 西林县| 仁布县| 西平县| 镇原县| 泸溪县| 清水县| 商都县| 兴宁市| 韶关市| 社旗县| 新密市| 清丰县| 慈利县| 泰和县| 安阳市| 敦化市| 永州市| 灌南县| 高邑县| 沙湾县| 镇安县| 甘泉县| 佛山市| 静乐县| 五河县| 江孜县| 开封市| 西安市| 灵璧县|