找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization on Low Rank Nonconvex Structures; Hiroshi Konno,Phan Thien Thach,Hoang Tuy Book 1997 Springer Science+Business Media Dordrech

[復(fù)制鏈接]
樓主: 復(fù)雜
21#
發(fā)表于 2025-3-25 03:52:14 | 只看該作者
Continuous LocationLow rank nonconvex problems occur in many practical applications. In this chapter we discuss problems of continuous location which are highly nonconvex by their geometric nature, however can often be efficiently solved due to the low dimensionality of the underlying space.
22#
發(fā)表于 2025-3-25 10:15:42 | 只看該作者
23#
發(fā)表于 2025-3-25 13:47:48 | 只看該作者
24#
發(fā)表于 2025-3-25 18:14:59 | 只看該作者
1571-568X t deterministic algorithms have been proposed in the last tenyears for solving several classes of large scale specially structuredproblems encountered in such areas as chemical engineering, financialengineering, location and network optimization, production andinventory control, engineering design,
25#
發(fā)表于 2025-3-25 23:46:26 | 只看該作者
26#
發(fā)表于 2025-3-26 03:49:25 | 只看該作者
27#
發(fā)表于 2025-3-26 06:29:37 | 只看該作者
D.C. Functions and D.C. Setsructure makes it a very convenient framework for a unified approach to an extremely broad class of problems at first sight very different from each other. For the design of efficient solution methods for these problems, it is, therefore, necessary to understand the d.c. structure.
28#
發(fā)表于 2025-3-26 09:11:37 | 只看該作者
Low-Rank Nonconvex Structures integer linear programming problems were developed in the 60’s (Benders (1962), Rosen (1964), Ritter (1967)) and ever since extended to nonlinear programming with many applications (Balas (1970), Geoffrion (1970), (1972)), Fleischmann (1973), Tind and Wolsey (1981), Burkard et al. (1985), Tuy (1987).
29#
發(fā)表于 2025-3-26 15:36:14 | 只看該作者
Global Search Methods and Basic D.C. Optimization Algorithmsoblem of this class into a sequence of subproblems of low dimension, whose data are adaptively generated from those of the original problem. These subproblems of low dimension are often solved by a specialized version of some general purpose method.
30#
發(fā)表于 2025-3-26 18:41:21 | 只看該作者
Low Rank Nonconvex Quadratic Programmingen successfully applied to a number of practical problems in portfolio analysis (Pang (1980), Takehara (1993), etc.. Also it has been used as a sub-procedure for solving general convex minimization problems (Boggs and Tolle (1995)).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 22:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临澧县| 岚皋县| 大同县| 句容市| 南召县| 米泉市| 上栗县| 岑巩县| 巍山| 东城区| 五河县| 连云港市| 寿光市| 错那县| 石景山区| 唐河县| 榆树市| 固镇县| 临漳县| 黄大仙区| 维西| 十堰市| 锦州市| 司法| 桐梓县| 亳州市| 乌海市| 永寿县| 郓城县| 富裕县| 永川市| 西峡县| 成都市| 灵寿县| 武隆县| 瑞丽市| 高碑店市| 凤山县| 斗六市| 铜山县| 革吉县|