找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization of Polynomials in Non-Commuting Variables; Sabine Burgdorf,Igor Klep,Janez Povh Book 2016 The Author(s) 2016 Newton chip meth

[復(fù)制鏈接]
查看: 22229|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:08:20 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables
編輯Sabine Burgdorf,Igor Klep,Janez Povh
視頻videohttp://file.papertrans.cn/704/703287/703287.mp4
概述Focuses on polynomial optimization problems in matrix unknowns.Includes fundamental material from algebra, functional analysis and mathematical optimization.Provides instructions on using NCSOStools o
叢書(shū)名稱SpringerBriefs in Mathematics
圖書(shū)封面Titlebook: Optimization of Polynomials in Non-Commuting Variables;  Sabine Burgdorf,Igor Klep,Janez Povh Book 2016 The Author(s) 2016 Newton chip meth
描述.This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms..
出版日期Book 2016
關(guān)鍵詞Newton chip method; Newton cyclic chip method; Sum of hermitian squares; non-commutative algebraic geom
版次1
doihttps://doi.org/10.1007/978-3-319-33338-0
isbn_softcover978-3-319-33336-6
isbn_ebook978-3-319-33338-0Series ISSN 2191-8198 Series E-ISSN 2191-8201
issn_series 2191-8198
copyrightThe Author(s) 2016
The information of publication is updating

書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables影響因子(影響力)




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables影響因子(影響力)學(xué)科排名




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables被引頻次




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables被引頻次學(xué)科排名




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables年度引用




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables年度引用學(xué)科排名




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables讀者反饋




書(shū)目名稱Optimization of Polynomials in Non-Commuting Variables讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:04:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:30:32 | 只看該作者
地板
發(fā)表于 2025-3-22 06:54:29 | 只看該作者
Cyclic Equivalence to Sums of Hermitian Squares,lgorithmic aspects of detecting members in .. We present a tracial version of the Gram matrix method based on the tracial version of the Newton chip method which by using semidefinite programming efficiently answers the question if a given nc polynomial is or is not cyclically equivalent to a sum of hermitian squares.
5#
發(fā)表于 2025-3-22 12:40:02 | 只看該作者
6#
發(fā)表于 2025-3-22 13:44:26 | 只看該作者
Eigenvalue Optimization of Polynomials in Non-commuting Variables,if it yields a positive semidefinite matrix when we replace the letters (variables) in the polynomial by symmetric matrices of the same order. Helton’s Theorem?1.30 implies that positive semidefinite polynomials are exactly the SOHS polynomials, the set of which we denoted by ...
7#
發(fā)表于 2025-3-22 21:01:44 | 只看該作者
8#
發(fā)表于 2025-3-23 00:06:33 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:35 | 只看該作者
https://doi.org/10.1007/978-3-319-33338-0Newton chip method; Newton cyclic chip method; Sum of hermitian squares; non-commutative algebraic geom
10#
發(fā)表于 2025-3-23 07:53:37 | 只看該作者
Sabine Burgdorf,Igor Klep,Janez PovhFocuses on polynomial optimization problems in matrix unknowns.Includes fundamental material from algebra, functional analysis and mathematical optimization.Provides instructions on using NCSOStools o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 08:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英超| 杨浦区| 镇远县| 衢州市| 微博| 翁源县| 玉屏| 体育| 固始县| 晋宁县| 富源县| 剑川县| 河西区| 隆化县| 晋城| 红桥区| 宝丰县| 汝州市| 高雄县| 鹿邑县| 保亭| 新乡市| 兴文县| 瓦房店市| 新乡市| 富平县| 闸北区| 鄱阳县| 武山县| 南平市| 合阳县| 穆棱市| 扶沟县| 桓台县| 临桂县| 徐水县| 江阴市| 望都县| 甘肃省| 大新县| 宾阳县|