找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization and Operations Research; Proceedings of a Wor Rudolf Henn,Bernhard Korte,Werner Oettli Conference proceedings 1978 Springer-Ve

[復(fù)制鏈接]
樓主: 壓縮
51#
發(fā)表于 2025-3-30 10:29:11 | 只看該作者
Differentiable Perturbations of Infinite Optimization Problems,he objective function and in the constraints. In particular, upper and lower bounds for the directional derivative of the extremal value function as well as necessary and sufficient conditions for the existence of the directional derivative are given.
52#
發(fā)表于 2025-3-30 14:41:36 | 只看該作者
53#
發(fā)表于 2025-3-30 19:28:21 | 只看該作者
54#
發(fā)表于 2025-3-30 21:21:25 | 只看該作者
The Theorem of Minkowski for Polyhedral Monoids and Aggregated Linear Diophantine Systems,s also for monoids M(N, B)={x?Z. / Nx + By=o, y?Z>.}. We consider the aggregated system GNx+GBy=o where G is an (r,m) aggregation matrix and show how the cardinality of a span of M(GN,GB) and M(N,B) relate to each other. Moreover we show how the group order of the Gomory group derived from M(N,B) changes if we aggregate Nx+By=o to GNx+GBy=o.
55#
發(fā)表于 2025-3-31 04:39:31 | 只看該作者
The Solution of Algebraic Assignment and Transportation Problems,mations which can be determined by maximal flow resp. by shortest path algorithms. Numerical results for these and primal methods applied to sum and bottleneck assignment resp. transportation problems are mentioned.
56#
發(fā)表于 2025-3-31 06:22:36 | 只看該作者
A Note on Directional Differentiability of Flow Network Equilibria with Respect to a Parameter,th each arc α ∈ A, we associate a oneparameter family of arc characteristics f. (α;π), the parameter π varying between ?. and . > o. This provides us with a one-parameter family of networks (N, A, f(…;π)). (For details on arc characteristics see e.g. IRI [1], who by the way speaks of branch instead of arc characteristics.)
57#
發(fā)表于 2025-3-31 10:08:05 | 只看該作者
58#
發(fā)表于 2025-3-31 17:13:13 | 只看該作者
59#
發(fā)表于 2025-3-31 21:05:21 | 只看該作者
60#
發(fā)表于 2025-3-31 21:48:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 21:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
禹城市| 瑞安市| 金川县| 西峡县| 靖江市| 东乡族自治县| 杨浦区| 武胜县| 东明县| 龙口市| 福海县| 沂水县| 潼关县| 西丰县| 北京市| 屏东县| 高淳县| 景德镇市| 台中市| 洪湖市| 商都县| 界首市| 汨罗市| 龙川县| 定结县| 玉龙| 深水埗区| 奉新县| 会泽县| 金平| 泗阳县| 大冶市| 石渠县| 留坝县| 固原市| 仁布县| 甘肃省| 江永县| 米泉市| 出国| 墨玉县|