找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization and Learning; 4th International Co Bernabé Dorronsoro,Lionel Amodeo,Patricia Ruiz Conference proceedings 2021 Springer Nature

[復制鏈接]
樓主: trace-mineral
31#
發(fā)表于 2025-3-26 21:22:03 | 只看該作者
32#
發(fā)表于 2025-3-27 04:49:02 | 只看該作者
A Learning-Based Iterated Local Search Algorithm for Solving the Traveling Salesman Probleme well-known NP-Hard Traveling Salesman Problem. This metaheuristic basically employs single local search and perturbation operators for finding the (near-) optimal solution. In this paper, by incorporating multiple local search and perturbation operators, we explore the use of reinforcement learnin
33#
發(fā)表于 2025-3-27 08:50:53 | 只看該作者
34#
發(fā)表于 2025-3-27 13:18:42 | 只看該作者
A Comparison of Learnheuristics Using Different Reward Functions to Solve the Set Covering Problem machine learning. The concept behind the hybridization of both worlds is called Learnheuristics which allows to improve optimization methods through machine learning techniques where the input data for learning is the data produced by the optimization methods during the search process. Among the mo
35#
發(fā)表于 2025-3-27 13:49:39 | 只看該作者
A Bayesian Optimisation Approach for?Multidimensional Knapsack Problemultidimensional knapsack problem with a large number of items and knapsack constraints, a two-level formulation is presented to take advantage of the global optimisation capability of the Bayesian optimisation approach, and the efficiency of integer programming solvers on small problems. The first l
36#
發(fā)表于 2025-3-27 20:28:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:53 | 只看該作者
Guiding Representation Learning in Deep Generative Models with Policy Gradientsion. Using such a representation as input to Reinforcement Learning (RL) approaches may reduce learning time, enable domain transfer or improve interpretability of the model. However, current state-of-the-art approaches that combine VAE with RL fail at learning good performing policies on certain RL
38#
發(fā)表于 2025-3-28 02:22:02 | 只看該作者
Deep Reinforcement Learning for?Dynamic Pricing of Perishable Productsic pricing of perishable products using DQN value function approximator. A model-free reinforcement learning approach is used to maximize revenue for a perishable item with fixed initial inventory and selling horizon. The demand is influenced by the price and freshness of the product. The convention
39#
發(fā)表于 2025-3-28 09:54:26 | 只看該作者
An Exploratory Analysis on a Disinformation Datasete the effects of this type of content have their impacts in the most diverse areas and generate more and more impacts within society. Automated fact-checking systems have been proposed by applying supervised machine learning techniques to assist in filtering fake news. However, two challenges are st
40#
發(fā)表于 2025-3-28 11:38:34 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
赣州市| 游戏| 晋中市| 永兴县| 石景山区| 阿克| 丘北县| 莒南县| 昌图县| 德清县| 吉隆县| 夏津县| 夹江县| 胶南市| 桐庐县| 桂平市| 乌兰察布市| 马山县| 博罗县| 绍兴县| 新田县| 南澳县| 鱼台县| 专栏| 额济纳旗| 镇康县| 神池县| 宁国市| 隆昌县| 漯河市| 神木县| 定襄县| 青铜峡市| 灵丘县| 阿拉善右旗| 青浦区| 萍乡市| 大英县| 麻阳| 贵定县| 香港 |