找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization and Applications; 9th International Co Yury Evtushenko,Milojica Ja?imovi?,Mikhail Posypki Conference proceedings 2019 Springer

[復(fù)制鏈接]
樓主: HAG
11#
發(fā)表于 2025-3-23 11:18:00 | 只看該作者
12#
發(fā)表于 2025-3-23 14:47:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:24:40 | 只看該作者
Mirror Descent and Constrained Online Optimization Problemsnon-smooth functionals are given on a closed set of .-dimensional vector space. The problem is to minimize the arithmetic mean of functionals with a convex Lipschitz-continuous non-smooth constraint. In addition, it is allowed to calculate the (sub)gradient of each functional only once. Using some r
14#
發(fā)表于 2025-3-24 00:39:00 | 只看該作者
15#
發(fā)表于 2025-3-24 02:31:38 | 只看該作者
16#
發(fā)表于 2025-3-24 10:34:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:36:33 | 只看該作者
18#
發(fā)表于 2025-3-24 14:50:46 | 只看該作者
Improved Polynomial Time Approximation Scheme for Capacitated Vehicle Routing Problem with Time Windn operations research. In this paper, following the famous framework by M.?Haimovich and A.?Rinnooy Kan and technique by T.?Asano et al., we propose a novel approximation scheme for the planar Euclidean CVRPTW. For any fixed ., the proposed scheme finds a .-approximate solution of CVRPTW in time .wh
19#
發(fā)表于 2025-3-24 21:44:01 | 只看該作者
Piecewise Linear Bounding Functions for Univariate Global Optimizationn global optimization where such bounds are used by deterministic methods to reduce the search area. It should be noted that bounding functions are expected to be relatively easy to construct and manipulate with. We propose to use piecewise linear estimators for bounding univariate functions. The ru
20#
發(fā)表于 2025-3-25 00:37:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
彩票| 区。| 阳原县| 黑山县| 昌宁县| 德阳市| 砀山县| 六盘水市| 依安县| 赤壁市| 余江县| 勃利县| 峨边| 南阳市| 敖汉旗| 德昌县| 宜昌市| 白银市| 区。| 喀喇沁旗| 永顺县| 曲周县| 商河县| 长阳| 宁都县| 新建县| 华池县| 特克斯县| 威海市| 四川省| 平凉市| 兴海县| 当雄县| 文水县| 北票市| 龙井市| 锡林浩特市| 宜昌市| 博爱县| 巴彦淖尔市| 乌拉特前旗|