找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization and Applications; 9th International Co Yury Evtushenko,Milojica Ja?imovi?,Mikhail Posypki Conference proceedings 2019 Springer

[復(fù)制鏈接]
樓主: HAG
11#
發(fā)表于 2025-3-23 11:18:00 | 只看該作者
12#
發(fā)表于 2025-3-23 14:47:36 | 只看該作者
13#
發(fā)表于 2025-3-23 21:24:40 | 只看該作者
Mirror Descent and Constrained Online Optimization Problemsnon-smooth functionals are given on a closed set of .-dimensional vector space. The problem is to minimize the arithmetic mean of functionals with a convex Lipschitz-continuous non-smooth constraint. In addition, it is allowed to calculate the (sub)gradient of each functional only once. Using some r
14#
發(fā)表于 2025-3-24 00:39:00 | 只看該作者
15#
發(fā)表于 2025-3-24 02:31:38 | 只看該作者
16#
發(fā)表于 2025-3-24 10:34:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:36:33 | 只看該作者
18#
發(fā)表于 2025-3-24 14:50:46 | 只看該作者
Improved Polynomial Time Approximation Scheme for Capacitated Vehicle Routing Problem with Time Windn operations research. In this paper, following the famous framework by M.?Haimovich and A.?Rinnooy Kan and technique by T.?Asano et al., we propose a novel approximation scheme for the planar Euclidean CVRPTW. For any fixed ., the proposed scheme finds a .-approximate solution of CVRPTW in time .wh
19#
發(fā)表于 2025-3-24 21:44:01 | 只看該作者
Piecewise Linear Bounding Functions for Univariate Global Optimizationn global optimization where such bounds are used by deterministic methods to reduce the search area. It should be noted that bounding functions are expected to be relatively easy to construct and manipulate with. We propose to use piecewise linear estimators for bounding univariate functions. The ru
20#
發(fā)表于 2025-3-25 00:37:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
响水县| 晋中市| 平潭县| 定南县| 昭平县| 余庆县| 尼木县| 宝清县| 丰镇市| 增城市| 广州市| 江门市| 汉川市| 双桥区| 阿合奇县| 类乌齐县| 中阳县| 西贡区| 泸定县| 新郑市| 垫江县| 唐海县| 武隆县| 修水县| 正宁县| 平乐县| 太原市| 雷波县| 延庆县| 调兵山市| 庆云县| 积石山| 黄山市| 葫芦岛市| 湄潭县| 岳普湖县| 华容县| 容城县| 饶平县| 蛟河市| 兴业县|