找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimization Algorithms for Distributed Machine Learning; Gauri Joshi Book 2023 The Editor(s) (if applicable) and The Author(s), under exc

[復(fù)制鏈接]
查看: 9582|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:13:08 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Optimization Algorithms for Distributed Machine Learning
編輯Gauri Joshi
視頻videohttp://file.papertrans.cn/704/703136/703136.mp4
概述Discusses state-of-the-art algorithms that are at the core of the field of federated learning.Analyzes each algorithm based on its error versus iterations convergence, and the runtime spent per iterat
叢書(shū)名稱Synthesis Lectures on Learning, Networks, and Algorithms
圖書(shū)封面Titlebook: Optimization Algorithms for Distributed Machine Learning;  Gauri Joshi Book 2023 The Editor(s) (if applicable) and The Author(s), under exc
描述This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
出版日期Book 2023
關(guān)鍵詞Distributed Machine Learning; Distributed Optimization; Optimization Algorithms; Stochastic Gradient De
版次1
doihttps://doi.org/10.1007/978-3-031-19067-4
isbn_softcover978-3-031-19069-8
isbn_ebook978-3-031-19067-4Series ISSN 2690-4306 Series E-ISSN 2690-4314
issn_series 2690-4306
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Optimization Algorithms for Distributed Machine Learning影響因子(影響力)




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning被引頻次




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning被引頻次學(xué)科排名




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning年度引用




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning年度引用學(xué)科排名




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning讀者反饋




書(shū)目名稱Optimization Algorithms for Distributed Machine Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:24:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:07:27 | 只看該作者
地板
發(fā)表于 2025-3-22 07:47:27 | 只看該作者
5#
發(fā)表于 2025-3-22 09:35:21 | 只看該作者
6#
發(fā)表于 2025-3-22 14:57:24 | 只看該作者
7#
發(fā)表于 2025-3-22 19:36:43 | 只看該作者
8#
發(fā)表于 2025-3-22 23:03:23 | 只看該作者
Gauri Joshiinterested in computer science and cognitive psychology.OffeThis book covers fundamental principles and computational approaches relevant to visual saliency computation. As an interdisciplinary problem, visual saliency computation is introduced in this book from an innovative perspective that combin
9#
發(fā)表于 2025-3-23 04:43:12 | 只看該作者
Gauri Joshidevices offered little more function than basic email, calendar and contacts. Due to advances in semiconductor technology, these devices started offering the computation power comparable to a slightly older generation computer and made them capable of running a wide variety of user installed applica
10#
發(fā)表于 2025-3-23 08:27:58 | 只看該作者
Gauri Joshidefined, well contained and fairly secure. However, now with the emergence of the consumer mobile devices from Apple iOS and Google Android, the enterprise has been forced to make functional tradeoffs in order to maintain platform and data security. Due to the corporate security decisions, the end u
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 08:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
抚远县| 老河口市| 雷州市| 新平| 溧阳市| 龙南县| 井冈山市| 龙岩市| 洱源县| 锡林浩特市| 微山县| 赤城县| 庆安县| 罗定市| 囊谦县| 如皋市| 铁力市| 建瓯市| 浦县| 吉木萨尔县| 宜黄县| 永善县| 仲巴县| 苍南县| 凤城市| 平湖市| 贵南县| 晋宁县| 犍为县| 钦州市| 陈巴尔虎旗| 兴化市| 河津市| 明水县| 渝中区| 灵璧县| 涿州市| 桓台县| 黔江区| 元阳县| 华安县|