找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Transportation Networks; Models and Theory Marc Bernot,Vicent Caselles,Jean-Michel Morel Book 2009 Springer-Verlag Berlin Heidelber

[復制鏈接]
樓主: JADE
31#
發(fā)表于 2025-3-27 00:40:24 | 只看該作者
32#
發(fā)表于 2025-3-27 02:25:29 | 只看該作者
33#
發(fā)表于 2025-3-27 07:30:34 | 只看該作者
Interior and Boundary Regularity,point .∈. (Section 8.2). These definitions and the fact that connected components of an optimal traffic plan are themselves optimal traffic plans will permit to perform some surgery leading to the main regularity theorems. The first “interior” regularity theorem (Section 8.3) states that outside the
34#
發(fā)表于 2025-3-27 10:55:17 | 只看該作者
35#
發(fā)表于 2025-3-27 16:37:48 | 只看該作者
Irrigability and Dimension,s irrigable with respect to α. In that case, notice that μ is also β-irrigable for β>α. This observation proves the existence of a critical exponent α associated with μ and defined as the smallest exponent such that μ is α-irrigable. The aim of the chapter is to link this exponent to more classical
36#
發(fā)表于 2025-3-27 18:17:15 | 只看該作者
37#
發(fā)表于 2025-3-28 01:15:55 | 只看該作者
The Gilbert-Steiner Problem, setting by Gilbert in [44]. Following his steps, we first consider the irrigation problem from a source to two Dirac masses. If the optimal structure is made of three edges, the first order condition for a local optimum yields constraints on the angles between the edges at the bifurcation point (se
38#
發(fā)表于 2025-3-28 02:45:04 | 只看該作者
Dirac to Lebesgue Segment: A Case Study,ase of Monge-Kantorovich transport, as illustrated by Figure 13.1, an optimal traffic plan is totally spread in the sense that fibers connect every point of the segment with the source. If α=0, which corresponds to the problem of Steiner, an optimal traffic plan is such that all the mass is first co
39#
發(fā)表于 2025-3-28 10:16:05 | 只看該作者
40#
發(fā)表于 2025-3-28 14:25:05 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 04:49
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
大丰市| 剑阁县| 榆社县| 工布江达县| 南宫市| 龙江县| 南开区| 镇赉县| 武城县| 台北市| 和静县| 昌邑市| 孟州市| 宜昌市| 通化县| 资溪县| 杭州市| 茌平县| 屏南县| 新郑市| 新和县| 平原县| 台前县| 额济纳旗| 吉木萨尔县| 宝兴县| 金坛市| 古丈县| 门头沟区| 内乡县| 乐昌市| 来凤县| 长汀县| 宣恩县| 大冶市| 高台县| 奇台县| 桃园县| 伊金霍洛旗| 定边县| 高清|