找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Time-Domain Noise Reduction Filters; A Theoretical Study Jacob Benesty,Jingdong Chen Book 2011 Jacob Benesty 2011 LCMV filter.MDVR

[復(fù)制鏈接]
查看: 30511|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:47:24 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Optimal Time-Domain Noise Reduction Filters
副標(biāo)題A Theoretical Study
編輯Jacob Benesty,Jingdong Chen
視頻videohttp://file.papertrans.cn/703/702937/702937.mp4
概述Proposes a general framework in the time domain for the single and multiple microphone cases.All known algorithms can be deduced from this new approach.Includes supplementary material:
叢書名稱SpringerBriefs in Electrical and Computer Engineering
圖書封面Titlebook: Optimal Time-Domain Noise Reduction Filters; A Theoretical Study Jacob Benesty,Jingdong Chen Book 2011 Jacob Benesty 2011 LCMV filter.MDVR
描述Additive noise is ubiquitous in acoustics environments and can affect the intelligibility and quality of speech signals. Therefore, a so-called noise reduction algorithm is required to mitigate the effect of the noise that is picked up by the microphones. This work proposes a general framework in the time domain for the single and multiple microphone cases, from which it is very convenient to derive, study, and analyze all kind of optimal noise reduction filters. Not only that all known algorithms can be deduced from this approach, shedding more light on how they function, but new ones can be discovered as well.
出版日期Book 2011
關(guān)鍵詞LCMV filter; MDVR filter; Wiener filter; maximun SNR filter; microphone arrays; multichannel; noise reduct
版次1
doihttps://doi.org/10.1007/978-3-642-19601-0
isbn_softcover978-3-642-19600-3
isbn_ebook978-3-642-19601-0Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
copyrightJacob Benesty 2011
The information of publication is updating

書目名稱Optimal Time-Domain Noise Reduction Filters影響因子(影響力)




書目名稱Optimal Time-Domain Noise Reduction Filters影響因子(影響力)學(xué)科排名




書目名稱Optimal Time-Domain Noise Reduction Filters網(wǎng)絡(luò)公開度




書目名稱Optimal Time-Domain Noise Reduction Filters網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Optimal Time-Domain Noise Reduction Filters被引頻次




書目名稱Optimal Time-Domain Noise Reduction Filters被引頻次學(xué)科排名




書目名稱Optimal Time-Domain Noise Reduction Filters年度引用




書目名稱Optimal Time-Domain Noise Reduction Filters年度引用學(xué)科排名




書目名稱Optimal Time-Domain Noise Reduction Filters讀者反饋




書目名稱Optimal Time-Domain Noise Reduction Filters讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:57:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:54:50 | 只看該作者
https://doi.org/10.1007/978-3-642-19601-0LCMV filter; MDVR filter; Wiener filter; maximun SNR filter; microphone arrays; multichannel; noise reduct
地板
發(fā)表于 2025-3-22 04:52:25 | 只看該作者
5#
發(fā)表于 2025-3-22 11:35:13 | 只看該作者
6#
發(fā)表于 2025-3-22 15:12:48 | 只看該作者
7#
發(fā)表于 2025-3-22 18:24:59 | 只看該作者
Multichannel Noise Reduction with a Rectangular Filtering Matrix,number of samples from each microphone signal. This time, a rectangular filtering matrix of size . is required for the estimation of the desired signal vector. The signal model is the same as in .; so we start by explaining the principle of multichannel linear filtering with a rectangular matrix.
8#
發(fā)表于 2025-3-23 00:17:56 | 只看該作者
9#
發(fā)表于 2025-3-23 03:25:00 | 只看該作者
10#
發(fā)表于 2025-3-23 09:04:46 | 只看該作者
Single-Channel Noise Reduction with a Rectangular Filtering Matrix,e than one sample at a time. As a result, we now deal with a rectangular filtering matrix instead of a filtering vector. If . is the number of samples to be estimated and . is the length of the observation signal vector, then the size of the filtering matrix is .?×?.. Also, this approach is more gen
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
迁安市| 鄄城县| 鞍山市| 墨脱县| 临城县| 密云县| 镶黄旗| 资溪县| 兴山县| 安义县| 五台县| 青海省| 清水县| 雷波县| 侯马市| 田东县| 佛学| 泾川县| 庆云县| 永靖县| 横峰县| 玉树县| 兴山县| 长沙县| 阿克苏市| 东至县| 绥德县| 南部县| 恭城| 姜堰市| 榕江县| 天津市| 班玛县| 疏附县| 怀集县| 商丘市| 郴州市| 茶陵县| 陈巴尔虎旗| 子洲县| 万盛区|