找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE; Nizar Touzi Book 2013 Springer Science+Business Media New York 2

[復(fù)制鏈接]
樓主: 鳴叫大步走
21#
發(fā)表于 2025-3-25 06:40:58 | 只看該作者
22#
發(fā)表于 2025-3-25 11:12:42 | 只看該作者
Solving Control Problems by Verification,o the unknown value function. Namely, given a smooth solution . of the dynamic programming equation, we give sufficient conditions which allow to conclude that . coincides with the value function .. This is the so-called .. The statement of this result is heavy, but its proof is simple and relies es
23#
發(fā)表于 2025-3-25 14:39:10 | 只看該作者
24#
發(fā)表于 2025-3-25 17:45:00 | 只看該作者
Backward SDEs and Stochastic Control,rol to stochastic target problems. More importantly, the general theory in this chapter will be developed in the non-Markov framework. The Markovian framework of the previous chapters and the corresponding PDEs will be obtained under a specific construction. From this viewpoint, BSDEs can be viewed
25#
發(fā)表于 2025-3-25 21:21:27 | 只看該作者
Quadratic Backward SDEs,wth. In the Markovian case, this corresponds to a problem of second-order semilinear PDE with quadratic growth in the gradient term. The first existence and uniqueness result in this context was established by M. Kobylanski in her Ph.D. thesis by adapting some previously established PDE techniques t
26#
發(fā)表于 2025-3-26 04:02:54 | 只看該作者
Introduction to Finite Differences Methods,g in quantitative finance. The approach is based on the very powerful and simple framework developed by Barles– Souganidis [4], see the review of the previous chapter. The key property here is the monotonicity which guarantees that the scheme satisfies the same ellipticity condition as the HJB opera
27#
發(fā)表于 2025-3-26 07:54:23 | 只看該作者
28#
發(fā)表于 2025-3-26 11:53:58 | 只看該作者
29#
發(fā)表于 2025-3-26 12:51:20 | 只看該作者
30#
發(fā)表于 2025-3-26 17:15:02 | 只看該作者
https://doi.org/10.1007/978-1-4614-4286-8backwards stochastic differential equations; dynamic programming; financial mathematics; stochastic con
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 12:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
任丘市| 栾川县| 泰顺县| 肥东县| 永德县| 丹阳市| 伊宁市| 南阳市| 海原县| 丹棱县| 庄河市| 邯郸县| 益阳市| 曲周县| 永州市| 赣榆县| 常熟市| 同仁县| 济阳县| 睢宁县| 湟中县| 九寨沟县| 玉山县| 刚察县| 新建县| 永定县| 诏安县| 鄂托克旗| 太谷县| 南漳县| 林芝县| 怀来县| 牙克石市| 高要市| 梓潼县| 景泰县| 滦平县| 靖江市| 江西省| 宜兴市| 柘荣县|