找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE; Nizar Touzi Book 2013 Springer Science+Business Media New York 2

[復(fù)制鏈接]
樓主: 鳴叫大步走
21#
發(fā)表于 2025-3-25 06:40:58 | 只看該作者
22#
發(fā)表于 2025-3-25 11:12:42 | 只看該作者
Solving Control Problems by Verification,o the unknown value function. Namely, given a smooth solution . of the dynamic programming equation, we give sufficient conditions which allow to conclude that . coincides with the value function .. This is the so-called .. The statement of this result is heavy, but its proof is simple and relies es
23#
發(fā)表于 2025-3-25 14:39:10 | 只看該作者
24#
發(fā)表于 2025-3-25 17:45:00 | 只看該作者
Backward SDEs and Stochastic Control,rol to stochastic target problems. More importantly, the general theory in this chapter will be developed in the non-Markov framework. The Markovian framework of the previous chapters and the corresponding PDEs will be obtained under a specific construction. From this viewpoint, BSDEs can be viewed
25#
發(fā)表于 2025-3-25 21:21:27 | 只看該作者
Quadratic Backward SDEs,wth. In the Markovian case, this corresponds to a problem of second-order semilinear PDE with quadratic growth in the gradient term. The first existence and uniqueness result in this context was established by M. Kobylanski in her Ph.D. thesis by adapting some previously established PDE techniques t
26#
發(fā)表于 2025-3-26 04:02:54 | 只看該作者
Introduction to Finite Differences Methods,g in quantitative finance. The approach is based on the very powerful and simple framework developed by Barles– Souganidis [4], see the review of the previous chapter. The key property here is the monotonicity which guarantees that the scheme satisfies the same ellipticity condition as the HJB opera
27#
發(fā)表于 2025-3-26 07:54:23 | 只看該作者
28#
發(fā)表于 2025-3-26 11:53:58 | 只看該作者
29#
發(fā)表于 2025-3-26 12:51:20 | 只看該作者
30#
發(fā)表于 2025-3-26 17:15:02 | 只看該作者
https://doi.org/10.1007/978-1-4614-4286-8backwards stochastic differential equations; dynamic programming; financial mathematics; stochastic con
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博湖县| 子长县| 东港市| 浙江省| 小金县| 扎囊县| 黔西县| 华蓥市| 修文县| 荥经县| 朝阳市| 探索| 自治县| 甘南县| 出国| 赤壁市| 深水埗区| 酒泉市| 平南县| 舞钢市| 汤原县| 黔东| 类乌齐县| 城口县| 凌源市| 清流县| 图片| 南昌市| 西盟| 濉溪县| 楚雄市| 淮安市| 邵东县| 若尔盖县| 留坝县| 无锡市| 花垣县| 碌曲县| 龙井市| 长沙县| 万山特区|