找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Shape Design for Elliptic Systems; Olivier Pironneau Book 1984 Springer-Verlag New York Inc. 1984 Design.Diskretisation.Elliptisch

[復(fù)制鏈接]
查看: 44235|回復(fù): 41
樓主
發(fā)表于 2025-3-21 18:15:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Optimal Shape Design for Elliptic Systems
編輯Olivier Pironneau
視頻videohttp://file.papertrans.cn/703/702920/702920.mp4
叢書(shū)名稱Scientific Computation
圖書(shū)封面Titlebook: Optimal Shape Design for Elliptic Systems;  Olivier Pironneau Book 1984 Springer-Verlag New York Inc. 1984 Design.Diskretisation.Elliptisch
描述The study of optimal shape design can be arrived at by asking the following question: "What is the best shape for a physical system?" This book is an applications-oriented study of such physical systems; in particular, those which can be described by an elliptic partial differential equation and where the shape is found by the minimum of a single criterion function. There are many problems of this type in high-technology industries. In fact, most numerical simulations of physical systems are solved not to gain better understanding of the phenomena but to obtain better control and design. Problems of this type are described in Chapter 2. Traditionally, optimal shape design has been treated as a branch of the calculus of variations and more specifically of optimal control. This subject interfaces with no less than four fields: optimization, optimal control, partial differential equations (PDEs), and their numerical solutions-this is the most difficult aspect of the subject. Each of these fields is reviewed briefly: PDEs (Chapter 1), optimization (Chapter 4), optimal control (Chapter 5), and numerical methods (Chapters 1 and 4).
出版日期Book 1984
關(guān)鍵詞Design; Diskretisation; Elliptische Differentialgleichung; Konstruktion; Optimale Regelung; boundary elem
版次1
doihttps://doi.org/10.1007/978-3-642-87722-3
isbn_softcover978-3-642-87724-7
isbn_ebook978-3-642-87722-3Series ISSN 1434-8322 Series E-ISSN 2198-2589
issn_series 1434-8322
copyrightSpringer-Verlag New York Inc. 1984
The information of publication is updating

書(shū)目名稱Optimal Shape Design for Elliptic Systems影響因子(影響力)




書(shū)目名稱Optimal Shape Design for Elliptic Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Optimal Shape Design for Elliptic Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Optimal Shape Design for Elliptic Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Optimal Shape Design for Elliptic Systems被引頻次




書(shū)目名稱Optimal Shape Design for Elliptic Systems被引頻次學(xué)科排名




書(shū)目名稱Optimal Shape Design for Elliptic Systems年度引用




書(shū)目名稱Optimal Shape Design for Elliptic Systems年度引用學(xué)科排名




書(shū)目名稱Optimal Shape Design for Elliptic Systems讀者反饋




書(shū)目名稱Optimal Shape Design for Elliptic Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:27 | 只看該作者
Design Problems Solved by Standard Optimal Control Theory,This approach ought to be well understood before proceeding to the general case where the control is looked at as a geometric element of the system. For further details and examples, the reader is referred to [40].
板凳
發(fā)表于 2025-3-22 03:11:30 | 只看該作者
地板
發(fā)表于 2025-3-22 05:42:59 | 只看該作者
Book 1984applications-oriented study of such physical systems; in particular, those which can be described by an elliptic partial differential equation and where the shape is found by the minimum of a single criterion function. There are many problems of this type in high-technology industries. In fact, most
5#
發(fā)表于 2025-3-22 10:13:57 | 只看該作者
ruck auf der Anbieterseite, steigende Ressourcenkosten sowie verschiedenste Verschiebungen auf der Nachfragerseite beeinflussen das unternehmerische Kosten- und Risikoprofil und damit die Refinanzierungsstruktur eines Unternehmens..Gesetzliche Regelungen, wie sie sich z.?B. aus dem international gül
6#
發(fā)表于 2025-3-22 16:42:11 | 只看該作者
Design Problems Solved by Standard Optimal Control Theory,], [29])..We give three examples of this type and use these examples as an opportunity to review the techniques of optimal control developed in [40]. This approach ought to be well understood before proceeding to the general case where the control is looked at as a geometric element of the system. F
7#
發(fā)表于 2025-3-22 17:18:49 | 只看該作者
Optimality Conditions,ms may be developed to find feasible numerical solutions. Although it is sufficient to know how to derive such conditions on discrete problems only, it is useful to begin with the study of the continuous case since it is simpler and it may give a valuable interpretation to the solution.
8#
發(fā)表于 2025-3-22 22:21:39 | 只看該作者
Discretization with Finite Elements,rential equations, the finite element method (FEM) is the obvious one to choose to use when the domains are the unknowns. We see that the FEM yields much simpler gradients than either the finite difference method or the boundary element method; these two methods are presented in Chapter 8. The FEM i
9#
發(fā)表于 2025-3-23 02:25:48 | 只看該作者
10#
發(fā)表于 2025-3-23 05:38:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
原平市| 万州区| 南昌市| 鄯善县| 新丰县| 郓城县| 囊谦县| 斗六市| 永安市| 邹城市| 高青县| 枞阳县| 乌海市| 晋宁县| 淮安市| 景泰县| 武穴市| 湾仔区| 武陟县| 北辰区| 婺源县| 三台县| 时尚| 商河县| 昭觉县| 新竹市| 钦州市| 白河县| 临汾市| 图们市| 濮阳市| 大丰市| 图们市| 武川县| 阳原县| 前郭尔| 乐亭县| 临泽县| 凭祥市| 冷水江市| 麻栗坡县|