找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control with a Worst-Case Performance Criterion and Applications; M. Bala Subrahmanyam Book 1990 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
查看: 54139|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:09:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications
編輯M. Bala Subrahmanyam
視頻videohttp://file.papertrans.cn/703/702847/702847.mp4
叢書名稱Lecture Notes in Control and Information Sciences
圖書封面Titlebook: Optimal Control with a Worst-Case Performance Criterion and Applications;  M. Bala Subrahmanyam Book 1990 Springer-Verlag Berlin Heidelberg
出版日期Book 1990
關(guān)鍵詞Disturbance Rejection; Model Reduction; Optimalwertregelung; Regelung; St?rung; St?rung (Math; ); control; m
版次1
doihttps://doi.org/10.1007/BFb0043621
isbn_softcover978-3-540-52822-7
isbn_ebook978-3-540-47158-5Series ISSN 0170-8643 Series E-ISSN 1610-7411
issn_series 0170-8643
copyrightSpringer-Verlag Berlin Heidelberg 1990
The information of publication is updating

書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications影響因子(影響力)




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications影響因子(影響力)學(xué)科排名




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications網(wǎng)絡(luò)公開度




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications被引頻次




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications被引頻次學(xué)科排名




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications年度引用




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications年度引用學(xué)科排名




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications讀者反饋




書目名稱Optimal Control with a Worst-Case Performance Criterion and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:53 | 只看該作者
Optimal disturbance rejection and performance robustness in linear systems, presence of parameter uncertainties is considered. An expression is derived for the variation of performance with parameter changes. The methodology has connections to the .. methods in the case of time-invariant systems. An application to an aircraft wing leveler system is given to illustrate the methodology.
板凳
發(fā)表于 2025-3-22 02:55:26 | 只看該作者
Necessary conditions for optimal disturbance rejection in linear systems,re also derived in the case of an observer-based controller. These conditions are useful in the synthesis of a controller which maximizes the disturbance rejection capacity of the system. The problem considered has connections to the .. control theory. An example is given.
地板
發(fā)表于 2025-3-22 07:19:23 | 只看該作者
Synthesis of finite-interval ,, controllers by state space methods,ximized. An optimality condition for the maximization of this parameter is given. The proposed method makes use of the observer-based parametrization of all stabilizing controllers. An example is worked out.
5#
發(fā)表于 2025-3-22 09:04:14 | 只看該作者
6#
發(fā)表于 2025-3-22 14:15:59 | 只看該作者
7#
發(fā)表于 2025-3-22 20:51:09 | 只看該作者
8#
發(fā)表于 2025-3-22 23:02:22 | 只看該作者
Optimal disturbance rejection and performance robustness in linear systems,f view. For a given set of system parameters, we obtain a measure of the disturbance rejection capacity of the system or observer. Optimization routines need to be employed to select control or observer gains which maximize the disturbance rejection capacity. The general case of time-varying linear
9#
發(fā)表于 2025-3-23 04:06:45 | 只看該作者
10#
發(fā)表于 2025-3-23 05:46:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
徐汇区| 长沙市| 进贤县| 屏东市| 克拉玛依市| 久治县| 四会市| 武威市| 旺苍县| 老河口市| 兴仁县| 贡山| 房产| 乐至县| 大名县| 西乌珠穆沁旗| 青海省| 中阳县| 广德县| 微山县| 砀山县| 乌拉特中旗| 独山县| 合阳县| 镇坪县| 连平县| 永丰县| 四平市| 麦盖提县| 察雅县| 安龙县| 福清市| 萨嘎县| 吴江市| 贵定县| 瑞安市| 罗甸县| 北川| 辽源市| 宜兴市| 上高县|