找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control of Partial Differential Equations; International Confer Karl-Heinz Hoffmann,Günter Leugering,Stiftung Caes Conference proce

[復制鏈接]
樓主: 積聚
51#
發(fā)表于 2025-3-30 12:16:08 | 只看該作者
52#
發(fā)表于 2025-3-30 14:33:22 | 只看該作者
53#
發(fā)表于 2025-3-30 19:05:50 | 只看該作者
54#
發(fā)表于 2025-3-30 22:08:51 | 只看該作者
55#
發(fā)表于 2025-3-31 02:13:06 | 只看該作者
Shape Sensitivity and Large Deformation of the Domain for Norton-Hoff Flows,e weak-solution of Norton-Hoff problem with respect to the domain and the shape-differentiability of the energy functional..From the so-called Shape Differential Equation, we prove the existence of a virtual large deformation of the domain that increase the energy functional.
56#
發(fā)表于 2025-3-31 06:44:54 | 只看該作者
On a Distributed Control Law with an Application to the Control of Unsteady Flow around a Cylinder,t every time step to the underlying dynamical system. The closed-loop controllers obtained in this way can be proved to be stable in the distributed control case for dynamical systems in finite dimensions, provided that the parameters of the controller are suitably adjusted [4]. As an application a
57#
發(fā)表于 2025-3-31 09:50:38 | 只看該作者
58#
發(fā)表于 2025-3-31 14:16:27 | 只看該作者
Stabilization of the Dynamic System of Elasticity by Nonlinear Boundary Feedback,ry. Through the use of sharp trace regularity results and a nonlinear compactness/uniqueness argument, a proof is derived without imposition of strong geometric restrictions on the controlled portion of the boundary, thus extending the original work of Lagnese [8].
59#
發(fā)表于 2025-3-31 21:28:53 | 只看該作者
60#
發(fā)表于 2025-4-1 00:49:57 | 只看該作者
A Domain Optimization Problem for a Nonlinear Thermoelastic System,l as the results of regularity of solutions to the state system, the sensitivity analysis of the solution to this system with respect to the variation of the domain is performed and necessary optimality conditions are derived.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 23:09
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
堆龙德庆县| 莫力| 南开区| 绥宁县| 五原县| 景德镇市| 临潭县| 阳原县| 平潭县| 东阿县| 尼勒克县| 志丹县| 西和县| 凤山市| 安宁市| 襄樊市| 本溪| 德阳市| 偃师市| 开平市| 余姚市| 玉树县| 海林市| 康乐县| 内黄县| 且末县| 平顺县| 类乌齐县| 广德县| 永善县| 蓝山县| 改则县| 泰宁县| 临高县| 涞源县| 崇义县| 县级市| 丰宁| 容城县| 保亭| 芮城县|