找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control for Mathematical Models of Cancer Therapies; An Application of Ge Heinz Sch?ttler,Urszula Ledzewicz Book 2015 Springer Scie

[復(fù)制鏈接]
樓主: 日月等
21#
發(fā)表于 2025-3-25 06:30:17 | 只看該作者
22#
發(fā)表于 2025-3-25 07:50:42 | 只看該作者
23#
發(fā)表于 2025-3-25 13:49:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:58:44 | 只看該作者
Cancer and Tumor Development: Biomedical Background,tails. Yet, it is precisely this highly simplified overall understanding that has motivated much of the historical developments of cancer research and it still defines most current activities in the “search for a cure.”
25#
發(fā)表于 2025-3-25 22:12:00 | 只看該作者
Optimal Control of Mathematical Models for Antiangiogenic Treatments,e) to administrations that also include singular controls (which correspond to time-varying dosing schedules at less than maximum rates) as heterogeneity of the tumor population becomes more prevalent. In this chapter, we begin to analyze mathematical models that also take into account a tumor’s microenvironment.
26#
發(fā)表于 2025-3-26 03:41:08 | 只看該作者
27#
發(fā)表于 2025-3-26 04:53:56 | 只看該作者
Book 2015ematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elabor
28#
發(fā)表于 2025-3-26 08:48:22 | 只看該作者
0939-6047 ence and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful..978-1-4939-4279-4978-1-4939-2972-6Series ISSN 0939-6047 Series E-ISSN 2196-9973
29#
發(fā)表于 2025-3-26 15:49:30 | 只看該作者
Heinz Sch?ttler,Urszula Ledzewiczthe approach adopted by VIS promotes the construction of productive interactions with the majority of learners, across a range of abilities. The learner model within VIS is in effect an operational definition of the ZPD of each learner who interacts with the system.
30#
發(fā)表于 2025-3-26 20:15:10 | 只看該作者
Heinz Sch?ttler,Urszula Ledzewiczthe approach adopted by VIS promotes the construction of productive interactions with the majority of learners, across a range of abilities. The learner model within VIS is in effect an operational definition of the ZPD of each learner who interacts with the system.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 14:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西峡县| 平遥县| 金华市| 温宿县| 攀枝花市| 冀州市| 新邵县| 镇宁| 莱芜市| 新竹市| 兰考县| 玉龙| 湾仔区| 阿图什市| 兴宁市| 林州市| 乐昌市| 平邑县| 出国| 白银市| 扶风县| 分宜县| 鄂州市| 福安市| 曲沃县| 巧家县| 淮北市| 宜春市| 麻江县| 资溪县| 定结县| 红河县| 万安县| 江津市| 宁晋县| 宝丰县| 台山市| 德庆县| 贵港市| 泽州县| 淮安市|