找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations; Martino Bardi,Italo Capuzzo-Dolcetta Book 1997 Springer Scie

[復(fù)制鏈接]
樓主: 拼圖游戲
31#
發(fā)表于 2025-3-26 20:56:43 | 只看該作者
2197-1803 a broad audience of graduate students and researchers in maThe purpose of the present book is to offer an up-to-date account of the theory of viscosity solutions of first order partial differential equations of Hamilton-Jacobi type and its applications to optimal deterministic control and different
32#
發(fā)表于 2025-3-27 01:48:43 | 只看該作者
Optimal control problems with continuous value functions: unrestricted state space,Dynamic Programming Principle and derive from it the appropriate Hamilton-Jacobi-Bellman equation for the value function. This allows us to apply the theory of Chapter II, and some extensions of it, to prove that the value function can in fact be characterized as the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation.
33#
發(fā)表于 2025-3-27 06:50:42 | 只看該作者
Book 1997f Hamilton-Jacobi type and its applications to optimal deterministic control and differential games. The theory of viscosity solutions, initiated in the early 80‘s by the papers of M.G. Crandall and P.L. Lions [CL81, CL83], M.G. Crandall, L.C. Evans and P.L. Lions [CEL84] and P.L. Lions‘ influential
34#
發(fā)表于 2025-3-27 11:13:44 | 只看該作者
35#
發(fā)表于 2025-3-27 17:13:10 | 只看該作者
Discontinuous viscosity solutions and applications,mi-limits, that we call weak limits in the viscosity sense, which are semicontinuous sub- or supersolutions. These weak limits are used extensively in Chapters VI and VII to study the convergence of approximation schemes and several asymptotic limits, even for control problems where the value function is continuous.
36#
發(fā)表于 2025-3-27 19:59:49 | 只看該作者
9樓
37#
發(fā)表于 2025-3-27 23:45:52 | 只看該作者
9樓
38#
發(fā)表于 2025-3-28 03:59:48 | 只看該作者
9樓
39#
發(fā)表于 2025-3-28 08:33:06 | 只看該作者
9樓
40#
發(fā)表于 2025-3-28 10:26:51 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
腾冲县| 安化县| 丰都县| 岳普湖县| 漳州市| 自贡市| 长顺县| 古田县| 马鞍山市| 潜山县| 靖州| 古交市| 阳朔县| 吉林省| 古浪县| 宜兴市| 哈密市| 杭锦旗| 望城县| 育儿| 永修县| 台东县| 东乌珠穆沁旗| 新昌县| 冷水江市| 神池县| 汉寿县| 合作市| 双城市| 武冈市| 太白县| 丰台区| 当雄县| 若羌县| 托里县| 镇安县| 突泉县| 太仓市| 萝北县| 即墨市| 万宁市|