找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control Theory for Infinite Dimensional Systems; Xunjing Li,Jiongmin Yong Book 1995 Birkh?user Boston 1995 Algebra.Finite.calculus

[復(fù)制鏈接]
查看: 17120|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:56:50 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Optimal Control Theory for Infinite Dimensional Systems
編輯Xunjing Li,Jiongmin Yong
視頻videohttp://file.papertrans.cn/703/702811/702811.mp4
叢書名稱Systems & Control: Foundations & Applications
圖書封面Titlebook: Optimal Control Theory for Infinite Dimensional Systems;  Xunjing Li,Jiongmin Yong Book 1995 Birkh?user Boston 1995 Algebra.Finite.calculus
描述Infinite dimensional systems can be used to describe many phenomena in the real world. As is well known, heat conduction, properties of elastic- plastic material, fluid dynamics, diffusion-reaction processes, etc., all lie within this area. The object that we are studying (temperature, displace- ment, concentration, velocity, etc.) is usually referred to as the state. We are interested in the case where the state satisfies proper differential equa- tions that are derived from certain physical laws, such as Newton‘s law, Fourier‘s law etc. The space in which the state exists is called the state space, and the equation that the state satisfies is called the state equation. By an infinite dimensional system we mean one whose corresponding state space is infinite dimensional. In particular, we are interested in the case where the state equation is one of the following types: partial differential equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book.
出版日期Book 1995
關(guān)鍵詞Algebra; Finite; calculus; equation; function; optimization; proof; theorem
版次1
doihttps://doi.org/10.1007/978-1-4612-4260-4
isbn_softcover978-1-4612-8712-4
isbn_ebook978-1-4612-4260-4Series ISSN 2324-9749 Series E-ISSN 2324-9757
issn_series 2324-9749
copyrightBirkh?user Boston 1995
The information of publication is updating

書目名稱Optimal Control Theory for Infinite Dimensional Systems影響因子(影響力)




書目名稱Optimal Control Theory for Infinite Dimensional Systems影響因子(影響力)學(xué)科排名




書目名稱Optimal Control Theory for Infinite Dimensional Systems網(wǎng)絡(luò)公開度




書目名稱Optimal Control Theory for Infinite Dimensional Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Optimal Control Theory for Infinite Dimensional Systems被引頻次




書目名稱Optimal Control Theory for Infinite Dimensional Systems被引頻次學(xué)科排名




書目名稱Optimal Control Theory for Infinite Dimensional Systems年度引用




書目名稱Optimal Control Theory for Infinite Dimensional Systems年度引用學(xué)科排名




書目名稱Optimal Control Theory for Infinite Dimensional Systems讀者反饋




書目名稱Optimal Control Theory for Infinite Dimensional Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:54:57 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:47:58 | 只看該作者
Xunjing Li,Jiongmin Yong ein NPM in entsprechender Weise mit einem Umbau ?ffentlicher Dienste zu komplettieren. Bei weiterer Verfeinerung geht es hier also um das Problem bzw. die Frage, ob bzw. inwieweit es nun gerade den hier einschl?gigen Vorreitern — den sog. NPM-Kernanwendern — in der Zwischenzeit gelungen ist, gewiss
地板
發(fā)表于 2025-3-22 08:25:20 | 只看該作者
5#
發(fā)表于 2025-3-22 10:16:23 | 只看該作者
Xunjing Li,Jiongmin Yonganz habe ?den Bestand an Schulden, die den Kaufmann wirtschaftlich belasten”,. darzustellen. Zwingende Konsequenz ist, dass die bilanzielle Schuld nicht einer Rechtsverpflichtung gleichgesetzt werden darf,. sondern im Gegenteil das Bestehen einer solchen Rechtsverpflichtung weder eine notwendige noc
6#
發(fā)表于 2025-3-22 15:31:40 | 只看該作者
7#
發(fā)表于 2025-3-22 20:47:15 | 只看該作者
8#
發(fā)表于 2025-3-22 21:24:40 | 只看該作者
9#
發(fā)表于 2025-3-23 04:12:15 | 只看該作者
Optimal Control Theory for Infinite Dimensional Systems
10#
發(fā)表于 2025-3-23 06:45:41 | 只看該作者
Book 1995tial equation, functional differential equation, integro-differential equation, or abstract evolution equation. The case in which the state equation is being a stochastic differential equation is also an infinite dimensional problem, but we will not discuss such a case in this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 05:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上蔡县| 临高县| 巴彦淖尔市| 陇南市| 临江市| 临沭县| 宝山区| 新巴尔虎右旗| 中江县| 秦安县| 满城县| 万荣县| 榆社县| 定日县| 若羌县| 巧家县| 金华市| 嵊泗县| 塔河县| 龙川县| 三河市| 壤塘县| 泰安市| 勃利县| 荔浦县| 平乡县| 无为县| 洛南县| 上栗县| 灵武市| 京山县| 康马县| 资阳市| 晋城| 瑞安市| 海晏县| 临西县| 上虞市| 大兴区| 永嘉县| 阿巴嘎旗|