找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model; Alexander J. Zaslavski Book 2021 The Editor(s) (if applicable) an

[復制鏈接]
查看: 36628|回復: 41
樓主
發(fā)表于 2025-3-21 17:50:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model
編輯Alexander J. Zaslavski
視頻videohttp://file.papertrans.cn/703/702801/702801.mp4
概述Develops the turnpike theory for a new class of autonomous optimal control problems related to the RSS model.Expands the turnpike theory also for a new class of nonautonomous optimal control problems
叢書名稱Monographs in Mathematical Economics
圖書封面Titlebook: Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model;  Alexander J. Zaslavski Book 2021 The Editor(s) (if applicable) an
描述This book is devoted to the study of classes of optimal control problems arising in economic growth theory, related to the Robinson–Solow–Srinivasan (RSS) model. The model was introduced in the 1960s by economists Joan Robinson, Robert Solow, and Thirukodikaval Nilakanta Srinivasan and was further studied by Robinson, Nobuo Okishio, and Joseph Stiglitz. Since then, the study of the RSS model has become an important element of economic dynamics. In this book, two large general classes of optimal control problems, both of them containing the RSS model as a particular case, are presented for study. For these two classes, a turnpike theory is developed and the existence of solutions to the corresponding infinite horizon optimal control problems is established.?.The book contains 9 chapters. Chapter 1 discusses turnpike properties for some optimal control problems that are known in the literature, including problems corresponding to the RSS model. The first class of optimal control problems is studied in Chaps. 2–6. In Chap. 2, infinite horizon optimal control problems with nonautonomous optimality criteria are considered. The utility functions, which determine the optimality criterion,
出版日期Book 2021
關(guān)鍵詞Turnpike property; Infinite horizon problem; Good program; Overtaking optimal program; Stability
版次1
doihttps://doi.org/10.1007/978-981-16-2252-6
isbn_softcover978-981-16-2254-0
isbn_ebook978-981-16-2252-6Series ISSN 2364-8279 Series E-ISSN 2364-8287
issn_series 2364-8279
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model影響因子(影響力)




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model影響因子(影響力)學科排名




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model網(wǎng)絡(luò)公開度




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model網(wǎng)絡(luò)公開度學科排名




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model被引頻次




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model被引頻次學科排名




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model年度引用




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model年度引用學科排名




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model讀者反饋




書目名稱Optimal Control Problems Related to the Robinson–Solow–Srinivasan Model讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:06:09 | 只看該作者
2364-8279 o for a new class of nonautonomous optimal control problems This book is devoted to the study of classes of optimal control problems arising in economic growth theory, related to the Robinson–Solow–Srinivasan (RSS) model. The model was introduced in the 1960s by economists Joan Robinson, Robert Solo
板凳
發(fā)表于 2025-3-22 01:16:40 | 只看該作者
地板
發(fā)表于 2025-3-22 05:25:47 | 只看該作者
5#
發(fā)表于 2025-3-22 10:05:10 | 只看該作者
6#
發(fā)表于 2025-3-22 14:12:46 | 只看該作者
7#
發(fā)表于 2025-3-22 19:08:37 | 只看該作者
Turnpike Properties for Autonomous Problems,In this chapter we consider a subclass of the class of discrete–time optimal problems studied in Chap.?.. Problems belonging to this subclass are autonomous, multi-dimensional and nonconcave. We obtain turnpike conditions and establish the stability of the turnpike phenomenon. All the main results of this chapter are new.
8#
發(fā)表于 2025-3-22 23:47:56 | 只看該作者
9#
發(fā)表于 2025-3-23 04:04:55 | 只看該作者
,The Turnpike Phenomenon for the Robinson–Shinkai–Leontief Model,In this chapter we study the Robinson–Shinkai–Leontief model. We are interested in the turnpike pnenomenon and in the existence of solutions of the corresponding infinite horizon problems.
10#
發(fā)表于 2025-3-23 07:29:20 | 只看該作者
Alexander J. ZaslavskiDevelops the turnpike theory for a new class of autonomous optimal control problems related to the RSS model.Expands the turnpike theory also for a new class of nonautonomous optimal control problems
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
兴文县| 商南县| 阿巴嘎旗| 邹平县| 嘉兴市| 农安县| 浦城县| 绥德县| 临沂市| 宾川县| 佛山市| 长寿区| 西畴县| 沧源| 白朗县| 阿坝县| 永丰县| 朔州市| 宜宾市| 永嘉县| 福州市| 吉隆县| 方山县| 汝南县| 天水市| 济南市| 德兴市| 罗平县| 盱眙县| 楚雄市| 白银市| 肃北| 莆田市| 扶绥县| 石柱| 交口县| 阳城县| 太仆寺旗| 如皋市| 阳信县| 镇赉县|