找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems; Martin Gugat Book 2015 The Author(s) 2015 Boundary stabilizatio

[復(fù)制鏈接]
樓主: 頻率
11#
發(fā)表于 2025-3-23 11:18:47 | 只看該作者
12#
發(fā)表于 2025-3-23 15:02:44 | 只看該作者
https://doi.org/10.1007/978-3-319-18890-4Boundary stabilization; Hyperbolic partial differential equations; Hyperbolic system; Optimal control p
13#
發(fā)表于 2025-3-23 18:32:56 | 只看該作者
Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems978-3-319-18890-4Series ISSN 2191-8112 Series E-ISSN 2191-8120
14#
發(fā)表于 2025-3-23 22:16:02 | 只看該作者
15#
發(fā)表于 2025-3-24 04:09:33 | 只看該作者
Exact Controllability,The question of exact controllability (see Lions, SIAM Rev. ., 1–68, 1988; Russell, J. Math. Anal. Appl. ., 542–560, 1967) is: Which states can be reached exactly at given control time . with a given set of control functions starting at time zero with an initial state from a prescribed set?
16#
發(fā)表于 2025-3-24 07:35:45 | 只看該作者
Optimal Exact Control,ive function that models our preferences. This leads to an optimal control problem where the prescribed end conditions can be regarded as equality constraints. Often, the control costs that are given by the norm of the control function are an interesting objective function.
17#
發(fā)表于 2025-3-24 14:08:10 | 只看該作者
18#
發(fā)表于 2025-3-24 17:58:51 | 只看該作者
Introduction,e for example Gugat et al., J. Optim. Theory Appl. ., 589–616, 2005; Work et al., Appl. Math. Res. Express ., 1–35, 2010). These models allow to study how control action influences the states in these systems.
19#
發(fā)表于 2025-3-24 21:12:05 | 只看該作者
2191-8112 s, and Burgers equations as typical examples to illustrate l.This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary.? The wave equation is us
20#
發(fā)表于 2025-3-25 02:22:39 | 只看該作者
Nonlinear Systems,yperbolic system, the solution can loose a part of its regularity after a finite time. For example, classical solutions typically break down after finite time since there is a blow up in certain partial derivatives.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
揭西县| 罗甸县| 定边县| 云浮市| 海宁市| 万源市| 长白| 开江县| 大洼县| 慈利县| 基隆市| 奉新县| 台湾省| 应用必备| 静宁县| 上林县| 泰来县| 孝感市| 阳新县| 墨竹工卡县| 丽水市| 蕉岭县| 白玉县| 元朗区| 卢湾区| 蕉岭县| 乐昌市| 墨脱县| 皋兰县| 阿拉尔市| 吴桥县| 方正县| 永丰县| 茂名市| 老河口市| 海晏县| 景泰县| 五峰| 广安市| 弥渡县| 波密县|