找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optimal Auxiliary Functions Method for Nonlinear Dynamical Systems; Vasile Marinca,Nicolae Herisanu,Bogdan Marinca Book 2021 The Editor(s)

[復制鏈接]
樓主: ACID
11#
發(fā)表于 2025-3-23 13:29:36 | 只看該作者
IntroductionA nonlinear system is a set of nonlinear equations—differential, integral, functional, algebraic, difference, or abstract operator equations, or a combination of some of these—used to describe a physical device or process that otherwise cannot be clearly defined by a set of linear equations of any kind.
12#
發(fā)表于 2025-3-23 17:01:19 | 只看該作者
The Optimal Auxiliary Functions MethodTo apply the Optimal Auxiliary Functions Method (OAFM), we consider the following general nonlinear differential equation.
13#
發(fā)表于 2025-3-23 20:05:01 | 只看該作者
The First Alternative of the Optimal Auxiliary Functions MethodIn this chapter, we will actually solve the Eq.?(2.13) from which the first approximation . can be determined.
14#
發(fā)表于 2025-3-24 00:17:45 | 只看該作者
Free Oscillations of Euler–Bernoulli Beams on Nonlinear Winkler-Pasternak FoundationThe use of beams of an elastic foundation has recently become widespread in engineering. Several research papers have appeared in literature on this topic. Horibe and Asano proposed a boundary integral equation method for calculating the large deflection of beams on an elastic foundation of the Pasternak type [1].
15#
發(fā)表于 2025-3-24 03:32:55 | 只看該作者
16#
發(fā)表于 2025-3-24 07:02:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:28:37 | 只看該作者
18#
發(fā)表于 2025-3-24 15:37:28 | 只看該作者
19#
發(fā)表于 2025-3-24 22:54:21 | 只看該作者
20#
發(fā)表于 2025-3-25 00:30:47 | 只看該作者
Free Vibration of Tapered BeamsTapered beams can model engineering structures which require a variable stiffness along the length, such as moving arms and turbine blades [.,.,.], or can be modeled as a slender, flexible cantilever beam carrying a lumped mass with rotary inertia at an intermediate point along its span hence it exhibits large-amplitude vibrations [., .].
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
虹口区| 富锦市| 云和县| 广西| 天柱县| 马公市| 江门市| 德州市| 平顶山市| 额敏县| 长宁区| 安义县| 思南县| 泾川县| 双柏县| 正镶白旗| 营山县| 蕉岭县| 昆明市| 天柱县| 云南省| 得荣县| 合阳县| 嘉善县| 泰兴市| 深州市| 中西区| 天等县| 汝阳县| 新河县| 皮山县| 峡江县| 长治县| 麻城市| 怀安县| 宁阳县| 静宁县| 武穴市| 资兴市| 乌兰县| 台东县|