找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Optical Anisotropy of Biological Polycrystalline Networks; Vector-Parametric Di Lilia Trifonyuk,Iryna V. Soltys,Jun Zheng Book 2023 The Aut

[復制鏈接]
樓主: 武士精神
11#
發(fā)表于 2025-3-23 11:31:16 | 只看該作者
12#
發(fā)表于 2025-3-23 17:53:45 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:12 | 只看該作者
Mueller-Matrix Description of the Optically Anisotropy of Biological Layers,e and dichroism of polycrystalline constituents of biological tissues are presented. The question of adequacy of Mueller-matrix description of polarization properties of bilayer with complex anisotropy is considered. The azimuthally invariant Mueller-matrix relations have been established.
14#
發(fā)表于 2025-3-24 01:33:45 | 只看該作者
15#
發(fā)表于 2025-3-24 04:20:52 | 只看該作者
Mueller-Matrix Modeling and Diagnostics of Optically Anisotropic Biological Layers,ependences of power spectra of coordinate distributions of azimuth and polarization ellipticity. Based on this, the differentiation of pathological conditions of biological tissues (histological sections of a biopsy of a benign and malignant tumor of the rectum) in the Fourier plane.
16#
發(fā)表于 2025-3-24 09:24:14 | 只看該作者
Azimuthally Invariant Mueller-Matrix Mapping of Optically Anisotropic Networks of Biological Tissuehe criteria of evidence-based medicine, the parameter . meets satisfactory quality and . meets good quality. Mueller-matrix mapping of blood-filled biological tissues has proven effective in the differential diagnosis of inflammatory processes of appendicitis tissue—balanced accuracy .).
17#
發(fā)表于 2025-3-24 12:30:23 | 只看該作者
Methods and Means of Fourier-Stokes Polarimetry and Spatial-Frequency Filtering of Phase Anisotropycorrespondingly lower level of linear birefringence. From a comparative analysis of the obtained data, the balanced accuracy . of the method of high-frequency filtering of MMI distributions describing the manifestations of circular birefringence of collagen networks of the endometrium in a precancer
18#
發(fā)表于 2025-3-24 16:52:33 | 只看該作者
Lilia Trifonyuk,Iryna V. Soltys,Alexander G. Ushenko,Yuriy A. Ushenko,Alexander V. Dubolazov,Jun Zhe
19#
發(fā)表于 2025-3-24 22:47:20 | 只看該作者
Lilia Trifonyuk,Iryna V. Soltys,Alexander G. Ushenko,Yuriy A. Ushenko,Alexander V. Dubolazov,Jun Zhe
20#
發(fā)表于 2025-3-25 01:40:19 | 只看該作者
Lilia Trifonyuk,Iryna V. Soltys,Alexander G. Ushenko,Yuriy A. Ushenko,Alexander V. Dubolazov,Jun Zhe
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巫山县| 酉阳| 门头沟区| 广西| 乌海市| 乌拉特后旗| 和顺县| 远安县| 改则县| 将乐县| 绥德县| 山阴县| 南汇区| 宜昌市| 营山县| 麦盖提县| 库尔勒市| 日喀则市| 梁山县| 含山县| 土默特右旗| 青冈县| 巴彦淖尔市| 沙田区| 商南县| 措美县| 遵义县| 确山县| 土默特右旗| 错那县| 涿鹿县| 通江县| 南平市| 阿合奇县| 启东市| 宝丰县| 仁怀市| 富川| 阿拉善盟| 西华县| 社旗县|