找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ophthalmic Medical Image Analysis; 6th International Wo Huazhu Fu,Mona K. Garvin,Yalin Zheng Conference proceedings 2019 Springer Nature Sw

[復(fù)制鏈接]
查看: 39588|回復(fù): 66
樓主
發(fā)表于 2025-3-21 18:54:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis
副標(biāo)題6th International Wo
編輯Huazhu Fu,Mona K. Garvin,Yalin Zheng
視頻videohttp://file.papertrans.cn/703/702389/702389.mp4
叢書(shū)名稱(chēng)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Ophthalmic Medical Image Analysis; 6th International Wo Huazhu Fu,Mona K. Garvin,Yalin Zheng Conference proceedings 2019 Springer Nature Sw
描述.This book constitutes the refereed proceedings of the 6th International Workshop on Ophthalmic Medical Image Analysis, OMIA 2019, held in conjunction with the 22nd International Conference on Medical Imaging and Computer-Assisted Intervention, MICCAI 2019, in Shenzhen, China, in October 2019...The 22 full papers (out of 36 submissions) presented at OMIA 2019 were carefully reviewed and selected. The papers cover various topics in the field of ophthalmic image analysis..
出版日期Conference proceedings 2019
關(guān)鍵詞artificial intelligence; classification; computer vision; image analysis; image processing; image reconst
版次1
doihttps://doi.org/10.1007/978-3-030-32956-3
isbn_softcover978-3-030-32955-6
isbn_ebook978-3-030-32956-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis影響因子(影響力)




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis被引頻次




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis被引頻次學(xué)科排名




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis年度引用




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis年度引用學(xué)科排名




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis讀者反饋




書(shū)目名稱(chēng)Ophthalmic Medical Image Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:35:03 | 只看該作者
Structure-Aware Noise Reduction Generative Adversarial Network for Optical Coherence Tomography Imasis. However, image quality still suffers from speckle noise and other motion artifacts. An effective OCT denoising method is needed to ensure the image is interpreted correctly. However, lack of paired clean image restricts its development. Here, we propose an end-to-end structure-aware noise reduc
板凳
發(fā)表于 2025-3-22 02:03:13 | 只看該作者
Region-Based Segmentation of Capillary Density in Optical Coherence Tomography Angiography, allows visualization and analysis of the retinal microvascular network in a non-invasive way. However, automated analysis of microvascular changes in OCTA is not a trivial task. Current approaches often attempt to directly segment the microvasculature. These approaches generally have problems in ca
地板
發(fā)表于 2025-3-22 06:37:15 | 只看該作者
5#
發(fā)表于 2025-3-22 09:41:18 | 只看該作者
6#
發(fā)表于 2025-3-22 14:42:56 | 只看該作者
7#
發(fā)表于 2025-3-22 20:10:40 | 只看該作者
3D-CNN for Glaucoma Detection Using Optical Coherence Tomography,e GPU in its original resolution. The direct analysis of these volumes however, provides advantages such as circumventing the need for the segmentation of retinal structures. Previously, a deep learning (DL) approach was proposed for the detection of glaucoma directly from 3D OCT volumes, where the
8#
發(fā)表于 2025-3-22 23:05:13 | 只看該作者
9#
發(fā)表于 2025-3-23 05:11:00 | 只看該作者
Shape Decomposition of Foveal Pit Morphology Using Scan Geometry Corrected OCT,e of the foveal pit in the human retina is still largely unknown. In this study we analyze the shape morphology of the foveal pit using a statistical shape model to find the principal shape variations in a cohort of 50 healthy subjects. Our analysis includes the use of scan geometry correction to re
10#
發(fā)表于 2025-3-23 09:17:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 23:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄市| 蒙山县| 大余县| 郯城县| 宁远县| 天水市| 凤冈县| 盐池县| 南华县| 自贡市| 蒲江县| 永德县| 信宜市| 新野县| 阜平县| 上杭县| 常山县| 时尚| 同德县| 苍溪县| 宜昌市| 本溪| 贺州市| 通化市| 昂仁县| 南溪县| 平利县| 周口市| 黔西县| 茌平县| 马尔康县| 紫金县| 沿河| 长乐市| 曲水县| 文安县| 彝良县| 临夏县| 福州市| 兴国县| 石屏县|