找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ophthalmic Medical Image Analysis; 10th International W Bhavna Antony,Hao Chen,Yalin Zheng Conference proceedings 2023 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: Lensometer
21#
發(fā)表于 2025-3-25 04:31:27 | 只看該作者
,Glaucoma Progression Detection and?Humphrey Visual Field Prediction Using Discriminative and?GeneraiT backbone. The model predicts future VFs with Pointwise Mean Absolute Error (PMAE) as low as 2.15 dB for mild VF deficits and is the first to extend VF prediction up to 10 years into the future. Our models are trained and validated on our ‘62K+’ dataset, the largest available of VFs to-date includ
22#
發(fā)表于 2025-3-25 09:04:22 | 只看該作者
,Utilizing Meta Pseudo Labels for?Semantic Segmentation of?Targeted Optic Nerve Features,work architecture, training data, and post-processing as an existing deep-learning approach, AxonDeep, to establish a fair comparison. The evaluations performed involved training four models using 10%, 25%, 50%, and 100% of the labeled images (n?=?26) alongside unlabeled images (n?=?50). Results fro
23#
發(fā)表于 2025-3-25 12:48:02 | 只看該作者
,Privileged Modality Guided Network for?Retinal Vessel Segmentation in?Ultra-Wide-Field Images, multi-scale location-aware fusion module is proposed and embedded into the segmentation network for reducing the boundary artifacts. Finally, experiments are performed on a dedicated UWF dataset, and the evaluation results demonstrate that our method achieves competitive vessel segmentation perform
24#
發(fā)表于 2025-3-25 16:27:36 | 只看該作者
,Automated Optic Disc Finder and?Segmentation Using Deep Learning for?Blood Flow Studies in?the?Eye,/test dataset ratio: 70/30) were used in this study. The nnU-Net was trained to identify the optic disc just based on the LSFG composite and light intensity images. After training, we compared the difference between nnU-Net’s output and Expert 1 with the difference between Expert 1 and a second clin
25#
發(fā)表于 2025-3-25 20:31:00 | 只看該作者
,Multi-relational Graph Convolutional Neural Networks for?Carotid Artery Stenosis Diagnosis via?Fund the four kinds of clinical data, such as gender, age, sex and pid, to obtain four adjacency matrices. Finally, the feature vectors and the corresponding four adjacency matrices are input into the graph convolutional network layer respectively to obtain the prediction features, and then the predicti
26#
發(fā)表于 2025-3-26 01:32:55 | 只看該作者
,Pretrained Deep 2.5D Models for?Efficient Predictive Modeling from?Retinal OCT: A PINNACLE Study Remance and data efficiency of 2.5D techniques even further. We demonstrate the effectiveness of architectures and associated pretraining on a task of predicting progression to wet age-related macular degeneration (AMD) within a six-month period on two large longitudinal OCT datasets.
27#
發(fā)表于 2025-3-26 04:56:06 | 只看該作者
28#
發(fā)表于 2025-3-26 09:18:55 | 只看該作者
29#
發(fā)表于 2025-3-26 13:34:19 | 只看該作者
30#
發(fā)表于 2025-3-26 19:34:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
寿光市| 遵化市| 金乡县| 大田县| 徐汇区| 淄博市| 鄂尔多斯市| 宽城| 南皮县| 宁强县| 监利县| 安国市| 南阳市| 泸定县| 北辰区| 溆浦县| 嘉峪关市| 黄冈市| 威信县| 乌拉特前旗| 溧阳市| 新津县| 神木县| 玉田县| 芷江| 绥棱县| 清远市| 莱州市| 富宁县| 陕西省| 宜城市| 湖南省| 惠水县| 崇州市| 墨竹工卡县| 许昌市| 东兰县| 东源县| 涪陵区| 长葛市| 宜都市|