找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Ophthalmic Medical Image Analysis; 8th International Wo Huazhu Fu,Mona K. Garvin,Yalin Zheng Conference proceedings 2021 Springer Nature Sw

[復(fù)制鏈接]
樓主: counterfeit
21#
發(fā)表于 2025-3-25 03:50:49 | 只看該作者
Juvenile Refractive Power Prediction Based on Corneal Curvature and Axial Length via a Domain Knowljuvenile eyes. In this paper, we develop a novel neural network algorithm to predict the refractive power, which is assessed by the Spherical Equivalent (SE), using real-world clinical non-cycloplegic refraction records. Participants underwent a comprehensive ophthalmic examination to obtain several
22#
發(fā)表于 2025-3-25 08:59:39 | 只看該作者
23#
發(fā)表于 2025-3-25 11:43:41 | 只看該作者
Are Cardiovascular Risk Scores from Genome and Retinal Image Complementary? A Deep Learning Investitent information indicating CVD risk. At the same time, genome-wide polygenic risk scores have demonstrated CVD risk prediction accuracy similar to conventional clinical factor-based risk scores. We speculated that information conveying CVD risk in retinal images may predominantly indicate environme
24#
發(fā)表于 2025-3-25 16:20:11 | 只看該作者
Dual-Branch Attention Network and Atrous Spatial Pyramid Pooling for Diabetic Retinopathy Classificvely prevent the disease, or at least delay the progression of DR. However, most methods are based on regular single-view images, which would lack complete information of lesions. In this paper, a novel method is proposed to achieve DR classification using ultra-widefield images (UWF). The proposed
25#
發(fā)表于 2025-3-26 00:04:17 | 只看該作者
Self-adaptive Transfer Learning for Multicenter Glaucoma Classification in Fundus Retina Images,n successfully used for computer-aided diagnosis (CAD) of glaucoma. However, a DL model pre-trained on certain dataset from one hospital may have poor performance on other hospital data, therefore its applications in the real scene are limited. In this paper, we propose a self-adaptive transfer lear
26#
發(fā)表于 2025-3-26 01:05:27 | 只看該作者
Multi-modality Images Analysis: A Baseline for Glaucoma Grading via Deep Learning,icians classify glaucoma into early, moderate, and advanced stages based on the extent of the patient’s visual field deficit. The treatment of glaucoma varies with the course of the disease. With the development of deep learning technology, more and more studies focus on the automatic diagnosis of g
27#
發(fā)表于 2025-3-26 06:01:58 | 只看該作者
28#
發(fā)表于 2025-3-26 10:06:21 | 只看該作者
Representation and Reconstruction of Image-Based Structural Patterns of Glaucomatous Defects Using uantitative estimates of glaucomatous progression use a global average and do not capture underlying spatial patterns. Motivated by the need for quantitative methods for describing and visualizing the spatial patterns of neuron loss in glaucoma, we evaluate the feasibility of spatial modeling of mac
29#
發(fā)表于 2025-3-26 13:53:48 | 只看該作者
30#
發(fā)表于 2025-3-26 19:51:04 | 只看該作者
Attention Guided Slit Lamp Image Quality Assessment,ovel attention-guided architecture for image quality assessment (IQA) of slit lamp images. Its characteristics are threefold: First, we build a two-branch classification network, where the input of one branch uses masked images to learning regional prior. Second, we use a Forward Grad-CAM (FG-CAM) t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 22:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇阳县| 阿鲁科尔沁旗| 克拉玛依市| 电白县| 德化县| 新乡县| 高邑县| 南郑县| 宜宾县| 桃园县| 利津县| 玛曲县| 平湖市| 宜州市| 慈利县| 监利县| 秭归县| 霍邱县| 博兴县| 广宁县| 开平市| 姜堰市| 七台河市| 东宁县| 灵宝市| 宁安市| 鄂托克前旗| 天津市| 凤城市| 江孜县| 武鸣县| 宁陕县| 临清市| 屏东市| 凌源市| 田东县| 泽普县| 嘉鱼县| 宣汉县| 合作市| 德安县|