找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Operators, Semigroups, Algebras and Function Theory; Volume from IWOTA La Yemon Choi,Matthew Daws,Gordon Blower Conference proceedings 2023

[復(fù)制鏈接]
樓主: ambulance
31#
發(fā)表于 2025-3-27 00:13:40 | 只看該作者
32#
發(fā)表于 2025-3-27 03:22:29 | 只看該作者
33#
發(fā)表于 2025-3-27 08:45:58 | 只看該作者
The Jacobi Operator and Its Donoghue ,-Functions,st one endpoint, ., is in the limit circle case. In doing so, we provide a full treatment of the Jacobi operator’s .-functions corresponding to coupled boundary conditions whenever both endpoints are in the limit circle case, a topic not covered in the literature.
34#
發(fā)表于 2025-3-27 09:37:08 | 只看該作者
35#
發(fā)表于 2025-3-27 15:26:57 | 只看該作者
A Noncommutative Bishop Peak Interpolation-Set Theorem,We prove a noncommutative version of Bishop’s peak interpolation-set theorem.
36#
發(fā)表于 2025-3-27 18:45:06 | 只看該作者
,Non-autonomous Desch–Schappacher Perturbations,We consider time-dependent Desch–Schappacher perturbations of non-autonomous abstract Cauchy problems and apply our result to non-autonomous uniformly strongly elliptic differential operators on .-spaces.
37#
發(fā)表于 2025-3-27 22:28:39 | 只看該作者
Brown Measure of ,-diagonal Operators, Revisited,We use the perspective of subordination functions to reformulate Haagerup–Schultz’s approach to the Brown measure of .-diagonal operators. This allows us to simplify the original argument and find a connection with the other approach due to Belinschi-?niady-Speicher. The Brown measure formula can be rewritten in terms of subordination functions.
38#
發(fā)表于 2025-3-28 03:01:30 | 只看該作者
Operator Theory: Advances and Applicationshttp://image.papertrans.cn/o/image/702366.jpg
39#
發(fā)表于 2025-3-28 09:11:21 | 只看該作者
Conference proceedings 2023This volume collects contributions from participants in the IWOTA conference held virtually at Lancaster, UK, originally scheduled in 2020 but postponed to August 2021. It includes both survey articles and original research papers covering some of the main themes of the meeting..
40#
發(fā)表于 2025-3-28 12:08:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲沃县| 西乡县| 铁力市| 沙坪坝区| 南康市| 黑龙江省| 界首市| 峨山| 明光市| 乐清市| 大丰市| 巴林右旗| 杨浦区| 浮山县| 广汉市| 武宣县| 武宁县| 承德市| 孟连| 宜章县| 桦南县| 沾益县| 当涂县| 阿合奇县| 祁东县| 昌江| 南丰县| 六枝特区| 峨边| 临安市| 蒙山县| 广宗县| 苏州市| 原阳县| 沙坪坝区| 柳江县| 岑溪市| 沈丘县| 渑池县| 内乡县| 青州市|