找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Operators Between Sequence Spaces and Applications; Bruno de Malafosse,Eberhard Malkowsky,Vladimir Rak Book 2021 The Editor(s) (if applica

[復(fù)制鏈接]
樓主: Capricious
11#
發(fā)表于 2025-3-23 12:04:00 | 只看該作者
Operators Between Sequence Spaces and Applications
12#
發(fā)表于 2025-3-23 16:48:27 | 只看該作者
13#
發(fā)表于 2025-3-23 19:18:40 | 只看該作者
14#
發(fā)表于 2025-3-24 00:30:36 | 只看該作者
Matrix Domains,triangles in certain sequence spaces. This seems to be natural in view of the fact that most classical methods of summability are given by triangles. There are a large number of recent publications in this area. The results in almost all of these publications are proved for each sequence space separ
15#
發(fā)表于 2025-3-24 02:49:41 | 只看該作者
16#
發(fā)表于 2025-3-24 10:21:15 | 只看該作者
17#
發(fā)表于 2025-3-24 12:27:25 | 只看該作者
Sequence Spaces Inclusion Equations,olving known linear spaces of sequences, or the matrix domains of some special operators. Using the results on multipliers, we start with the solvability of an elementary inclusion involving linear spaces of sequences. Then we add a linear space of sequences, or the matrix domain of some well-known
18#
發(fā)表于 2025-3-24 17:11:08 | 只看該作者
19#
發(fā)表于 2025-3-24 20:58:30 | 只看該作者
Solvability of Infinite Linear Systems,l theory. Notice that this domain has a lot of applications in numerical analysis, aeronautic, quantum mechanics, ecology, electrical engineering, structural mechanics and probability. Then, we deal with the famous Hill equation and we consider a Banach algebra in which we may obtain the inverse of
20#
發(fā)表于 2025-3-25 00:59:44 | 只看該作者
ng place within the concept of literacy, as different dimensions of literacy have emerged. Information- and digital literacy are prominent examples of this, as their significance in the 21. century has received an array of scholarly attention. However, dimensions of literacy and technology acceptanc
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵东县| 射洪县| 布尔津县| 泰州市| 阿巴嘎旗| 邵武市| 博白县| 正定县| 新化县| 错那县| 灯塔市| 浪卡子县| 巴里| 竹山县| 呈贡县| 保康县| 利川市| 晋江市| 通化县| 丰镇市| 元阳县| 武宣县| 通化市| 沈阳市| 新竹县| 衡山县| 新和县| 新丰县| 新巴尔虎右旗| 喀喇沁旗| 三台县| 岳西县| 邵东县| 错那县| 家居| 扶余县| 方正县| 灵宝市| 河南省| 崇义县| 泗洪县|